Defects And Surface Induced Effects In Advanced Perovskites

Author: Gunnar Borstel
Publisher: Springer Science & Business Media
ISBN: 9401140308
Size: 66.87 MB
Format: PDF, ePub
View: 6403
Complex oxide materials, especially the ABO3-type perovskite materials, have been attracting growing scientific interest due to their unique electro-optical properties, leading to photorefractive effects that form the basis for such devices as holographic storage, optical data processing and phase conjugation. The optical and mechanical properties of non-metals are strongly affected by the defects and impurities that are unavoidable in any real material. Nanoscopically sized surface effects play an important role, especially in multi-layered ABO3 structures, which are good candidates for high capacity memory cells. The 51 papers presented here report the latest developments and new results and will greatly stimulate progress in high-tech technologies using perovskite materials.

Application Of Particle And Laser Beams In Materials Technology

Author: P. Misaelides
Publisher: Springer Science & Business Media
ISBN: 9780792333241
Size: 60.83 MB
Format: PDF, ePub
View: 306
The development of advanced materials with preselected properties is one of the main goals of materials research. Of especial interest are electronics, high-temperature and superhard materials for various applications, as well as alloys with improved wear, corrosion and mechanical resistance properties. The technical challenge connected with the production of these materials is not only associated with the development of new specialised preparation techniques but also with quality control. The energetic charged particle, electron and photon beams offer the possibility of modifying the properties of the near-surface regions of materials without seriously affecting their bulk, and provide unique analytical tools for testing their quality. Application of Particle and Laser Beams in Materials Technology provides an overview of this rapidly expanding field. Fundamental aspects concerning the interactions and collisions on atomic, nuclear and solid state scale are presented in a didactic way, along with the application of a variety of techniques for the solution of problems ranging from the development of electronics materials to corrosion research and from archaeometry to environmental protection. The book is divided into six thematic units: Fundamentals, Surface Analysis Techniques, Laser Beams in Materials Technology, Accelerator-Based Techniques in Materials Technology, Materials Modification and Synchrotron Radiation.

Functional Gradient Materials And Surface Layers Prepared By Fine Particles Technology

Author: Marie-Isabelle Baraton
Publisher: Springer Science & Business Media
ISBN: 9401007020
Size: 35.58 MB
Format: PDF, ePub
View: 3586
The NATO Advanced Study Institute on "Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology" was held in Kiev (Ukraine) on June 18- 28, 2000 where more than 90 participants, ranging from Ph.D. students to experienced senior scientists, met and exchanged ideas. This meeting was aimed at stimulating the research work across traditional disciplinary lines by bringing together scientists from diverse research areas related to functional gradient materials and surface layers. It also intended to give opportunities for initiating collaborative works between scientists from NATO and Partner countries and to trigger fruitful and exciting discussions between experienced and young researchers. In this respect, this NATO-ASI has been quite successful. The term of functional gradient materials which originates from Japan in the 1980's describes a class of engineering materials with spatially inhomogeneous microstructures and properties (MRS Bulletin, 1995,20, N°l). These materials can be successfully utilized in various applications like electronic devices, optical films, anti wear and anti-corrosion coatings, thermal barrier coatings, biomaterials, to name only a few. Although these functional gradient materials are not fundamentally new, the use of nanoparticles in their fabrication and in surface layers as well has greatly improved their performances to meet challenging requirements for industrial applications.

New Trends In Intercalation Compounds For Energy Storage

Author: Christian Julien
Publisher: Springer Science & Business Media
ISBN: 9401003890
Size: 35.44 MB
Format: PDF, Mobi
View: 5886
Recent advances in electrochemistry and materials science have opened the way to the evolution of entirely new types of energy storage systems: rechargeable lithium-ion batteries, electrochroms, hydrogen containers, etc., all of which have greatly improved electrical performance and other desirable characteristics. This book encompasses all the disciplines linked in the progress from fundamentals to applications, from description and modelling of different materials to technological use, from general diagnostics to methods related to technological control and operation of intercalation compounds. Designing devices with higher specific energy and power will require a more profound understanding of material properties and performance. This book covers the status of materials and advanced activities based on the development of new substances for energy storage.

Radiation Detectors For Medical Applications

Author: Stefaan Tavernier
Publisher: Springer Science & Business Media
ISBN: 1402050933
Size: 76.99 MB
Format: PDF
View: 1342
The topic of this book is the use of scintillating materials in the detection of ionising radiation for medical imaging. The text surveys the state of the art in radiation detectors for medical imaging, followed by an in-depth review of all aspects of the use of scintillating materials. Also included are detailed discussion of ways to improve the performance of existing scintillating materials and completely novel uses of scintillating materials.

Nanoscience Advances In Cbrn Agents Detection Information And Energy Security

Author: Plamen Petkov
Publisher: Springer
ISBN: 9401796971
Size: 14.36 MB
Format: PDF, Docs
View: 3101
The preparation and characterization of various nano-scaled materials and their applications in diverse security and safety- related fields. Readers are provided with a broad overview on the topic as it combines articles addressing the preparation and characterization of different nano-scaled materials (metals, oxides, glasses, polymers, carbon-based, etc.). The contributions derive from the lectures and contributions of the NATO Advanced Study Institute meeting “Nanoscience Advances in CBRN Agents Detection, Information and Energy Security” held in Sozopol, Bulgaria, 29 May - 6 June, 2014. In addition, it presents an interdisciplinary approach, utilizing Nanoscience and Nanotechnology research from different disciplines including; physics, chemistry, engineering, materials science and biology. A major advantage of this book, which represents the knowledge of experts from 20 countries, is the combination of longer papers introducing the basic knowledge on a certain topic, and brief contributions highlighting specific applications in different security areas.

Nanoscale Devices Fundamentals And Applications

Author: Rudolf Gross
Publisher: Springer Science & Business Media
ISBN: 1402051077
Size: 73.97 MB
Format: PDF, Mobi
View: 5552
This book collects papers on the fundamentals and applications of nanoscale devices, first presented at the NATO Advanced Research Workshop on Nanoscale Devices – Fundamentals and Applications held in Kishinev, Moldova, in September 2004. The focus is on the synthesis and characterization of nanoscale magnetic materials; fundamental physics and materials aspects of solid-state nanostructures; development of novel device concepts and design principles for nanoscale devices; and on applications in electronics with emphasis on defence against the threat of terrorism.

Principles And Methods For Accelerated Catalyst Design And Testing

Author: E.G. Derouane
Publisher: Springer Science & Business Media
ISBN: 9401005540
Size: 21.33 MB
Format: PDF, ePub, Docs
View: 4901
High throughput experimentation has met great success in drug design but it has, so far, been scarcely used in the field ofcatalysis. We present in this book the outcome of a NATO ASI meeting that was held in Vilamoura, Portugal, between July 15 and 28, 2001, with the objective of delineating and consolidating the principles and methods underpinning accelerated catalyst design, evaluation, and development. There is a need to make the underlying principles of this new methodology more widely understood and to make it available in a coherent and integrated format. The latter objective is particularly important to the young scientists who will constitute the new catalysis researchers generation. Indeed, this field which is at the frontier offundamental science and may be a renaissance for catalysis, is one which is much more complex than classical catalysis itself. It implies a close collaboration between scientists from many disciplines (chemistry, physics, chemical and mechanical engineering, automation, robotics, and scientific computing in general). In addition, this emerging area of science is also of paramount industrial importance, as progress in this area would collapse the time necessary to discover new catalysts or improve existing ones.

Engineering Of Crystalline Materials Properties

Author: Juan J. Novoa
Publisher: Springer Science & Business Media
ISBN: 9781402068232
Size: 27.43 MB
Format: PDF, Mobi
View: 2024
This volume collects the state of the art in molecular materials. It collects the lecture notes of a series of lectures given by some of the best specialists in the field at the 2007 Erice International School of Crystallography, and also a NATO-ASI course. The school first established "where we are" in terms of modeling, design, synthesis and applications of crystalline solids with predefined properties and then defined current and possible futuristic lines of development.

Uniting Electron Crystallography And Powder Diffraction

Author: Ute Kolb
Publisher: Springer
ISBN: 9400755805
Size: 18.95 MB
Format: PDF, Kindle
View: 7102
The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination. This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of disciplines and materials stretching from archeometry to zeolites. As such, it is a comprehensive and valuable resource for those wishing to gain an understanding of the broad applicability of these two rapidly developing fields.