Cuda By Example

Author: Jason Sanders
Publisher: Addison-Wesley Professional
ISBN: 0132180138
Size: 60.67 MB
Format: PDF, ePub, Mobi
View: 3189
Download
CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html

Cuda By Example

Author: Jason Sanders
Publisher: Createspace Independent Publishing Platform
ISBN: 9781548587994
Size: 10.22 MB
Format: PDF, ePub, Mobi
View: 6166
Download
GPUs can be used for much more than graphics processing. As opposed to a CPU, which can only run four or five threads at once, a GPU is made up of hundreds or even thousands of individual, low-powered cores, allowing it to perform thousands of concurrent operations. Because of this, GPUs can tackle large, complex problems on a much shorter time scale than CPUs. Dive into parallel programming on NVIDIA hardware with CUDA by Chris Rose, and learn the basics of unlocking your graphics card. This updated and expanded second edition of Book provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements. A flowing writing style combines with the use of illustrations and diagrams throughout the text to ensure the reader understands even the most complex of concepts. This succinct and enlightening overview is a required reading for all those interested in the subject . We hope you find this book useful in shaping your future career & Business.

Cuda By Example

Author: Jason Sanders
Publisher: Createspace Independent Publishing Platform
ISBN: 9781548845117
Size: 18.25 MB
Format: PDF, Mobi
View: 2831
Download
GPUs can be used for much more than graphics processing. As opposed to a CPU, which can only run four or five threads at once, a GPU is made up of hundreds or even thousands of individual, low-powered cores, allowing it to perform thousands of concurrent operations. Because of this, GPUs can tackle large, complex problems on a much shorter time scale than CPUs. Dive into parallel programming on NVIDIA hardware with CUDA by Chris Rose, and learn the basics of unlocking your graphics card. This updated and expanded second edition of Book provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements. A flowing writing style combines with the use of illustrations and diagrams throughout the text to ensure the reader understands even the most complex of concepts. This succinct and enlightening overview is a required reading for all those interested in the subject . We hope you find this book useful in shaping your future career & Business.

Cuda Programming

Author: Shane Cook
Publisher: Newnes
ISBN: 0124159338
Size: 31.77 MB
Format: PDF, ePub, Docs
View: 409
Download
If you need to learn CUDA but don't have experience with parallel computing, CUDA Programming: A Developer's Introduction offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation. Chapters on core concepts including threads, blocks, grids, and memory focus on both parallel and CUDA-specific issues. Later, the book demonstrates CUDA in practice for optimizing applications, adjusting to new hardware, and solving common problems. Comprehensive introduction to parallel programming with CUDA, for readers new to both Detailed instructions help readers optimize the CUDA software development kit Practical techniques illustrate working with memory, threads, algorithms, resources, and more Covers CUDA on multiple hardware platforms: Mac, Linux and Windows with several NVIDIA chipsets Each chapter includes exercises to test reader knowledge

The Cuda Handbook

Author: Nicholas Wilt
Publisher: Addison-Wesley
ISBN: 0133261506
Size: 31.32 MB
Format: PDF, ePub, Mobi
View: 3112
Download
The CUDA Handbook begins where CUDA by Example (Addison-Wesley, 2011) leaves off, discussing CUDA hardware and software in greater detail and covering both CUDA 5.0 and Kepler. Every CUDA developer, from the casual to the most sophisticated, will find something here of interest and immediate usefulness. Newer CUDA developers will see how the hardware processes commands and how the driver checks progress; more experienced CUDA developers will appreciate the expert coverage of topics such as the driver API and context migration, as well as the guidance on how best to structure CPU/GPU data interchange and synchronization. The accompanying open source code–more than 25,000 lines of it, freely available at www.cudahandbook.com–is specifically intended to be reused and repurposed by developers. Designed to be both a comprehensive reference and a practical cookbook, the text is divided into the following three parts: Part I, Overview, gives high-level descriptions of the hardware and software that make CUDA possible. Part II, Details, provides thorough descriptions of every aspect of CUDA, including Memory Streams and events Models of execution, including the dynamic parallelism feature, new with CUDA 5.0 and SM 3.5 The streaming multiprocessors, including descriptions of all features through SM 3.5 Programming multiple GPUs Texturing The source code accompanying Part II is presented as reusable microbenchmarks and microdemos, designed to expose specific hardware characteristics or highlight specific use cases. Part III, Select Applications, details specific families of CUDA applications and key parallel algorithms, including Streaming workloads Reduction Parallel prefix sum (Scan) N-body Image Processing These algorithms cover the full range of potential CUDA applications.

Cuda Application Design And Development

Author: Rob Farber
Publisher: Elsevier
ISBN: 0123884268
Size: 11.56 MB
Format: PDF, ePub, Mobi
View: 1469
Download
Machine generated contents note: 1. How to think in CUDA 2. Tools to build, debug and profile 3. The GPU performance envelope 4. The CUDA memory subsystems 5. Exploiting the CUDA execution grid 6. MultiGPU applications and scaling 7. Numerical CUDA, libraries and high-level language bindings 8. Mixing CUDA with rendering 9. High Performance Machine Learning 10. Scientific Visualization 11. Multimedia with OpenCV 12. Ultra Low-power Devices: Tegra.

Opencl Programming Guide

Author: Aaftab Munshi
Publisher: Pearson Education
ISBN: 9780132594554
Size: 62.47 MB
Format: PDF, Docs
View: 4754
Download
Using the new OpenCL (Open Computing Language) standard, you can write applications that access all available programming resources: CPUs, GPUs, and other processors such as DSPs and the Cell/B.E. processor. Already implemented by Apple, AMD, Intel, IBM, NVIDIA, and other leaders, OpenCL has outstanding potential for PCs, servers, handheld/embedded devices, high performance computing, and even cloud systems. This is the first comprehensive, authoritative, and practical guide to OpenCL 1.1 specifically for working developers and software architects. Written by five leading OpenCL authorities, OpenCL Programming Guide covers the entire specification. It reviews key use cases, shows how OpenCL can express a wide range of parallel algorithms, and offers complete reference material on both the API and OpenCL C programming language. Through complete case studies and downloadable code examples, the authors show how to write complex parallel programs that decompose workloads across many different devices. They also present all the essentials of OpenCL software performance optimization, including probing and adapting to hardware. Coverage includes Understanding OpenCL’s architecture, concepts, terminology, goals, and rationale Programming with OpenCL C and the runtime API Using buffers, sub-buffers, images, samplers, and events Sharing and synchronizing data with OpenGL and Microsoft’s Direct3D Simplifying development with the C++ Wrapper API Using OpenCL Embedded Profiles to support devices ranging from cellphones to supercomputer nodes Case studies dealing with physics simulation; image and signal processing, such as image histograms, edge detection filters, Fast Fourier Transforms, and optical flow; math libraries, such as matrix multiplication and high-performance sparse matrix multiplication; and more Source code for this book is available at https://code.google.com/p/opencl-book-samples/

An Introduction To Parallel Programming

Author: Peter Pacheco
Publisher: Elsevier
ISBN: 9780080921440
Size: 29.36 MB
Format: PDF, Kindle
View: 5258
Download
An Introduction to Parallel Programming is the first undergraduate text to directly address compiling and running parallel programs on the new multi-core and cluster architecture. It explains how to design, debug, and evaluate the performance of distributed and shared-memory programs. The author Peter Pacheco uses a tutorial approach to show students how to develop effective parallel programs with MPI, Pthreads, and OpenMP, starting with small programming examples and building progressively to more challenging ones. The text is written for students in undergraduate parallel programming or parallel computing courses designed for the computer science major or as a service course to other departments; professionals with no background in parallel computing. Takes a tutorial approach, starting with small programming examples and building progressively to more challenging examples Focuses on designing, debugging and evaluating the performance of distributed and shared-memory programs Explains how to develop parallel programs using MPI, Pthreads, and OpenMP programming models

Cuda For Engineers

Author: Duane Storti
Publisher: Addison-Wesley Professional
ISBN: 013417755X
Size: 73.68 MB
Format: PDF, Docs
View: 5562
Download
CUDA for Engineers gives you direct, hands-on engagement with personal, high-performance parallel computing, enabling you to do computations on a gaming-level PC that would have required a supercomputer just a few years ago. The authors introduce the essentials of CUDA C programming clearly and concisely, quickly guiding you from running sample programs to building your own code. Throughout, you’ll learn from complete examples you can build, run, and modify, complemented by additional projects that deepen your understanding. All projects are fully developed, with detailed building instructions for all major platforms. Ideal for any scientist, engineer, or student with at least introductory programming experience, this guide assumes no specialized background in GPU-based or parallel computing. In an appendix, the authors also present a refresher on C programming for those who need it. Coverage includes Preparing your computer to run CUDA programs Understanding CUDA’s parallelism model and C extensions Transferring data between CPU and GPU Managing timing, profiling, error handling, and debugging Creating 2D grids Interoperating with OpenGL to provide real-time user interactivity Performing basic simulations with differential equations Using stencils to manage related computations across threads Exploiting CUDA’s shared memory capability to enhance performance Interacting with 3D data: slicing, volume rendering, and ray casting Using CUDA libraries Finding more CUDA resources and code Realistic example applications include Visualizing functions in 2D and 3D Solving differential equations while changing initial or boundary conditions Viewing/processing images or image stacks Computing inner products and centroids Solving systems of linear algebraic equations Monte-Carlo computations