Concepts And Formulations For Spatial Multibody Dynamics

Author: Paulo Flores
Publisher: Springer
ISBN: 3319161903
Size: 73.93 MB
Format: PDF, ePub, Mobi
View: 4470
Download
This book will be particularly useful to those interested in multibody simulation (MBS) and the formulation for the dynamics of spatial multibody systems. The main types of coordinates that can be used in the formulation of the equations of motion of constrained multibody systems are described. The multibody system, made of interconnected bodies that undergo large displacements and rotations, is fully defined. Readers will discover how Cartesian coordinates and Euler parameters are utilized and are the supporting structure for all methodologies and dynamic analysis, developed within the multibody systems methodologies. The work also covers the constraint equations associated with the basic kinematic joints, as well as those related to the constraints between two vectors. The formulation of multibody systems adopted here uses the generalized coordinates and the Newton-Euler approach to derive the equations of motion. This formulation results in the establishment of a mixed set of differential and algebraic equations, which are solved in order to predict the dynamic behavior of multibody systems. This approach is very straightforward in terms of assembling the equations of motion and providing all joint reaction forces. The demonstrative examples and discussions of applications are particularly valuable aspects of this book, which builds the reader’s understanding of fundamental concepts.

Contact Force Models For Multibody Dynamics

Author: Paulo Flores
Publisher: Springer
ISBN: 3319308971
Size: 35.14 MB
Format: PDF, Mobi
View: 7398
Download
This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehensive resource for the multibody dynamics community and beyond on modeling contact forces and the dynamics of mechanical systems undergoing contact-impact events.

Fundamentals Of Multibody Dynamics

Author: Farid Amirouche
Publisher: Springer Science & Business Media
ISBN: 0817644067
Size: 55.85 MB
Format: PDF, ePub, Mobi
View: 362
Download
This textbook – a result of the author’s many years of research and teaching – brings together diverse concepts of the versatile tool of multibody dynamics, combining the efforts of many researchers in the field of mechanics.

Shell Like Structures

Author: Holm Altenbach
Publisher: Springer
ISBN: 3319422774
Size: 41.16 MB
Format: PDF
View: 7457
Download
The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems:• comprehensive review of the most popular theories of plates and shells,• relations between three-dimensional theories and two-dimensional ones,• presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories),• modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc.,• applications in modeling of non-classical objects like, for example, nanostructures,• presentation of actual numerical tools based on the finite element approach.

Computational Flexible Multibody Dynamics

Author: Bernd Simeon
Publisher: Springer Science & Business Media
ISBN: 3642351581
Size: 36.29 MB
Format: PDF, Docs
View: 1976
Download
This monograph, written from a numerical analysis perspective, aims to provide a comprehensive treatment of both the mathematical framework and the numerical methods for flexible multibody dynamics. Not only is this field permanently and rapidly growing, with various applications in aerospace engineering, biomechanics, robotics, and vehicle analysis, its foundations can also be built on reasonably established mathematical models. Regarding actual computations, great strides have been made over the last two decades, as sophisticated software packages are now capable of simulating highly complex structures with rigid and deformable components. The approach used in this book should benefit graduate students and scientists working in computational mechanics and related disciplines as well as those interested in time-dependent partial differential equations and heterogeneous problems with multiple time scales. Additionally, a number of open issues at the frontiers of research are addressed by taking a differential-algebraic approach and extending it to the notion of transient saddle point problems.

Applications Of Chaos And Nonlinear Dynamics In Science And Engineering

Author: Santo Banerjee
Publisher: Springer
ISBN: 3319170376
Size: 47.96 MB
Format: PDF, ePub
View: 2599
Download
Chaos and nonlinear dynamics initially developed as a new emergent field with its foundation in physics and applied mathematics. The highly generic, interdisciplinary quality of the insights gained in the last few decades has spawned myriad applications in almost all branches of science and technology—and even well beyond. Wherever quantitative modeling and analysis of complex, nonlinear phenomena is required, chaos theory and its methods can play a key role. his fourth volume concentrates on reviewing further relevant contemporary applications of chaotic and nonlinear dynamics as they apply to the various cuttingedge branches of science and engineering. This encompasses, but is not limited to, topics such as synchronization in complex networks and chaotic circuits, time series analysis, ecological and biological patterns, stochastic control theory and vibrations in mechanical systems. Featuring contributions from active and leading research groups, this collection is ideal both as a reference and as a ‘recipe book’ full of tried and tested, successful engineering applications.

Setup Planning For Machining

Author: Manjuri Hazarika
Publisher: Springer
ISBN: 3319133209
Size: 31.23 MB
Format: PDF, ePub, Mobi
View: 5989
Download
Professionals as well as researchers can benefit from this comprehensive introduction into the topic of setup planning, which reflects the latest state of research and gives hands-on examples. Starting with a brief but thorough introduction, this book explains the significance of setup planning in process planning and includes a reflection on its external constraints. Step-by-step the different phases of setup planning are outlined and traditional as well as modern approaches, such as fuzzy logic based setup planning, on the solution of setup planning problems are presented. Three detailed examples of applications provide a clear and accessible insight into the up-to-date techniques and various approaches in setup planning.

Model Reduction Of Parametrized Systems

Author: Peter Benner
Publisher: Springer
ISBN: 3319587862
Size: 10.40 MB
Format: PDF, ePub, Mobi
View: 479
Download
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).

Multibody Dynamics With Unilateral Contacts

Author: Friedrich Pfeiffer
Publisher: Springer Science & Business Media
ISBN: 9783211833308
Size: 53.26 MB
Format: PDF, Kindle
View: 5153
Download
The volume introduces basic concepts necessary for a modern treatment of inequality problems in finite degree of freedom dynamics. Tools from convex analysis, by now well established in non-smooth mechanics, are used to formulate the constitutive equations and impact laws. The lectures cover a broad area of non-smooth dynamics from primal and dual energy functions in variational and differential form to application problems as chimney dampers or vibration conveyors. This includes frictional oscillations with bifurcation scenarios as well as analogies to small displacement quasi-static problems. The course is on an advanced level, designed primarily for postgraduate students, but should also be of value for scientists working on dynamic complementarity problems.

Kinematics And Dynamics Of Multibody Systems With Imperfect Joints

Author: Paulo Flores
Publisher: Springer Science & Business Media
ISBN: 9783540743613
Size: 37.78 MB
Format: PDF, Docs
View: 1712
Download
This book presents suitable methodologies for the dynamic analysis of multibody mechanical systems with joints. It contains studies and case studies of real and imperfect joints. The book is intended for researchers, engineers, and graduate students in applied and computational mechanics.