Combinatorial Designs

Author: Douglas R. Stinson
Publisher: Springer Science & Business Media
ISBN: 0387217371
Size: 51.99 MB
Format: PDF, ePub
View: 591
Download
Created to teach students many of the most important techniques used for constructing combinatorial designs, this is an ideal textbook for advanced undergraduate and graduate courses in combinatorial design theory. The text features clear explanations of basic designs, such as Steiner and Kirkman triple systems, mutual orthogonal Latin squares, finite projective and affine planes, and Steiner quadruple systems. In these settings, the student will master various construction techniques, both classic and modern, and will be well-prepared to construct a vast array of combinatorial designs. Design theory offers a progressive approach to the subject, with carefully ordered results. It begins with simple constructions that gradually increase in complexity. Each design has a construction that contains new ideas or that reinforces and builds upon similar ideas previously introduced. A new text/reference covering all apsects of modern combinatorial design theory. Graduates and professionals in computer science, applied mathematics, combinatorics, and applied statistics will find the book an essential resource.

Combinatorial Designs

Author: Douglas R. Stinson
Publisher: Springer Science & Business Media
ISBN: 0387954872
Size: 60.26 MB
Format: PDF, Mobi
View: 7437
Download
Created to teach students many of the most important techniques used for constructing combinatorial designs, this is an ideal textbook for advanced undergraduate and graduate courses in combinatorial design theory. The text features clear explanations of basic designs, such as Steiner and Kirkman triple systems, mutual orthogonal Latin squares, finite projective and affine planes, and Steiner quadruple systems. In these settings, the student will master various construction techniques, both classic and modern, and will be well-prepared to construct a vast array of combinatorial designs. Design theory offers a progressive approach to the subject, with carefully ordered results. It begins with simple constructions that gradually increase in complexity. Each design has a construction that contains new ideas or that reinforces and builds upon similar ideas previously introduced. A new text/reference covering all apsects of modern combinatorial design theory. Graduates and professionals in computer science, applied mathematics, combinatorics, and applied statistics will find the book an essential resource.

Combinatorial Design Theory

Author: C.J. Colbourn
Publisher: Elsevier
ISBN: 9780080872605
Size: 31.92 MB
Format: PDF, Kindle
View: 4321
Download
Combinatorial design theory is a vibrant area of combinatorics, connecting graph theory, number theory, geometry, and algebra with applications in experimental design, coding theory, and numerous applications in computer science. This volume is a collection of forty-one state-of-the-art research articles spanning all of combinatorial design theory. The articles develop new methods for the construction and analysis of designs and related combinatorial configurations; both new theoretical methods, and new computational tools and results, are presented. In particular, they extend the current state of knowledge on Steiner systems, Latin squares, one-factorizations, block designs, graph designs, packings and coverings, and develop recursive and direct constructions. The contributions form an overview of the current diversity of themes in design theory for those peripherally interested, while researchers in the field will find it to be a major collection of research advances. The volume is dedicated to Alex Rosa, who has played a major role in fostering and developing combinatorial design theory.

Combinatorial Algorithms

Author: Donald L. Kreher
Publisher: CRC Press
ISBN: 9780849339882
Size: 23.28 MB
Format: PDF, ePub, Mobi
View: 3152
Download
This textbook thoroughly outlines combinatorial algorithms for generation, enumeration, and search. Topics include backtracking and heuristic search methods applied to various combinatorial structures, such as: Combinations Permutations Graphs Designs Many classical areas are covered as well as new research topics not included in most existing texts, such as: Group algorithms Graph isomorphism Hill-climbing Heuristic search algorithms This work serves as an exceptional textbook for a modern course in combinatorial algorithms, providing a unified and focused collection of recent topics of interest in the area. The authors, synthesizing material that can only be found scattered through many different sources, introduce the most important combinatorial algorithmic techniques - thus creating an accessible, comprehensive text that students of mathematics, electrical engineering, and computer science can understand without needing a prior course on combinatorics.

Combinatorial Methods With Computer Applications

Author: Jonathan L. Gross
Publisher: CRC Press
ISBN: 1584887443
Size: 48.22 MB
Format: PDF, ePub, Mobi
View: 6463
Download
Combinatorial Methods with Computer Applications provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. Requiring only a foundation in discrete mathematics, it can serve as the textbook in a combinatorial methods course or in a combined graph theory and combinatorics course. After an introduction to combinatorics, the book explores six systematic approaches within a comprehensive framework: sequences, solving recurrences, evaluating summation expressions, binomial coefficients, partitions and permutations, and integer methods. The author then focuses on graph theory, covering topics such as trees, isomorphism, automorphism, planarity, coloring, and network flows. The final chapters discuss automorphism groups in algebraic counting methods and describe combinatorial designs, including Latin squares, block designs, projective planes, and affine planes. In addition, the appendix supplies background material on relations, functions, algebraic systems, finite fields, and vector spaces. Paving the way for students to understand and perform combinatorial calculations, this accessible text presents the discrete methods necessary for applications to algorithmic analysis, performance evaluation, and statistics as well as for the solution of combinatorial problems in engineering and the social sciences.

Algorithms In Combinatorial Design Theory

Author: C.J. Colbourn
Publisher: Elsevier
ISBN: 9780080872254
Size: 64.84 MB
Format: PDF, Mobi
View: 6241
Download
The scope of the volume includes all algorithmic and computational aspects of research on combinatorial designs. Algorithmic aspects include generation, isomorphism and analysis techniques - both heuristic methods used in practice, and the computational complexity of these operations. The scope within design theory includes all aspects of block designs, Latin squares and their variants, pairwise balanced designs and projective planes and related geometries.

Algebraic Design Theory And Hadamard Matrices

Author: Charles J. Colbourn
Publisher: Springer
ISBN: 331917729X
Size: 65.38 MB
Format: PDF, ePub, Docs
View: 2573
Download
This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices, and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions.​ ​The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important applications in cryptography, quantum information theory, communications, and networking.

The Mathematical Theory Of Coding

Author: Ian F. Blake
Publisher: Academic Press
ISBN: 1483260593
Size: 26.99 MB
Format: PDF, Docs
View: 6919
Download
The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.

Design Theory

Author: Charles C. Lindner
Publisher: CRC Press
ISBN: 9780849339868
Size: 32.44 MB
Format: PDF, ePub
View: 4127
Download
Created to teach students many of the most important techniques used for constructing combinatorial designs, this is an ideal textbook for advanced undergraduate and graduate courses in Combinatorial Design Theory. The text features clear explanations of basic designs such as Steiner and Kirkman triple systems, mutually orthogonal Latin squares, finite projective and affine planes, and Steiner quadruple systems. In these settings, the student will master various construction techniques, both classic and modern, and will be well prepared to construct a vast array of combinatorial designs. Design Theory offers a progressive approach to the subject, with carefully ordered results. It begins with simple constructions that gradually increase in complexity. Each design has a construction that contains new ideas, or that reinforces and builds upon similar ideas previously introduced. The many illustrations aid in understanding and enjoying the application of the constructions described. Written by professors with the needs of students in mind, this is destined to become the standard textbook for design theory.

Handbook Of Combinatorial Designs

Author: C. J. Colbourn
Publisher: Chapman and Hall/CRC
ISBN: 9781584885061
Size: 69.64 MB
Format: PDF, ePub, Mobi
View: 3465
Download
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.