Causal Inference For Statistics Social And Biomedical Sciences

Author: Guido W. Imbens
Publisher: Cambridge University Press
ISBN: 1316094391
Size: 49.54 MB
Format: PDF
View: 6288
Download
Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding to the outcome that would be realized if a subject were exposed to a particular treatment or regime. In this approach, causal effects are comparisons of such potential outcomes. The fundamental problem of causal inference is that we can only observe one of the potential outcomes for a particular subject. The authors discuss how randomized experiments allow us to assess causal effects and then turn to observational studies. They lay out the assumptions needed for causal inference and describe the leading analysis methods, including matching, propensity-score methods, and instrumental variables. Many detailed applications are included, with special focus on practical aspects for the empirical researcher.

Matched Sampling For Causal Effects

Author: Donald B. Rubin
Publisher: Cambridge University Press
ISBN: 1139458507
Size: 33.32 MB
Format: PDF, Kindle
View: 7504
Download
Matched sampling is often used to help assess the causal effect of some exposure or intervention, typically when randomized experiments are not available or cannot be conducted. This book presents a selection of Donald B. Rubin's research articles on matched sampling, from the early 1970s, when the author was one of the major researchers involved in establishing the field, to recent contributions to this now extremely active area. The articles include fundamental theoretical studies that have become classics, important extensions, and real applications that range from breast cancer treatments to tobacco litigation to studies of criminal tendencies. They are organized into seven parts, each with an introduction by the author that provides historical and personal context and discusses the relevance of the work today. A concluding essay offers advice to investigators designing observational studies. The book provides an accessible introduction to the study of matched sampling and will be an indispensable reference for students and researchers.

Quantitative Social Science

Author: Kosuke Imai
Publisher: Princeton University Press
ISBN: 1400885256
Size: 65.25 MB
Format: PDF, ePub, Mobi
View: 7391
Download
Quantitative analysis is an increasingly essential skill for social science research, yet students in the social sciences and related areas typically receive little training in it—or if they do, they usually end up in statistics classes that offer few insights into their field. This textbook is a practical introduction to data analysis and statistics written especially for undergraduates and beginning graduate students in the social sciences and allied fields, such as economics, sociology, public policy, and data science. Quantitative Social Science engages directly with empirical analysis, showing students how to analyze data using the R programming language and to interpret the results—it encourages hands-on learning, not paper-and-pencil statistics. More than forty data sets taken directly from leading quantitative social science research illustrate how data analysis can be used to answer important questions about society and human behavior. Proven in the classroom, this one-of-a-kind textbook features numerous additional data analysis exercises and interactive R programming exercises, and also comes with supplementary teaching materials for instructors. Written especially for students in the social sciences and allied fields, including economics, sociology, public policy, and data science Provides hands-on instruction using R programming, not paper-and-pencil statistics Includes more than forty data sets from actual research for students to test their skills on Covers data analysis concepts such as causality, measurement, and prediction, as well as probability and statistical tools Features a wealth of supplementary exercises, including additional data analysis exercises and interactive programming exercises Offers a solid foundation for further study Comes with additional course materials online, including notes, sample code, exercises and problem sets with solutions, and lecture slides

Causal Inference In Statistics

Author: Judea Pearl
Publisher: John Wiley & Sons
ISBN: 1119186862
Size: 21.17 MB
Format: PDF, ePub, Docs
View: 6892
Download
Many of the concepts and terminology surrounding modern causal inference can be quite intimidating to the novice. Judea Pearl presents a book ideal for beginners in statistics, providing a comprehensive introduction to the field of causality. Examples from classical statistics are presented throughout to demonstrate the need for causality in resolving decision-making dilemmas posed by data. Causal methods are also compared to traditional statistical methods, whilst questions are provided at the end of each section to aid student learning.

Explanation In Causal Inference

Author: Tyler VanderWeele
Publisher: Oxford University Press, USA
ISBN: 0199325871
Size: 21.71 MB
Format: PDF, ePub, Docs
View: 7130
Download
"A comprehensive book on methods for mediation and interaction. The only book to approach this topic from the perspective of causal inference. Numerous software tools provided. Easy-to-read and accessible. Examples drawn from diverse fields. An essential reference for anyone conducting empirical research in the biomedical or social sciences"--

Statistical Models And Causal Inference

Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 0521195004
Size: 22.57 MB
Format: PDF, ePub, Docs
View: 3995
Download
David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.

Targeted Learning

Author: Mark J. van der Laan
Publisher: Springer Science & Business Media
ISBN: 9781441997821
Size: 74.14 MB
Format: PDF, ePub
View: 110
Download
The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.

Handbook Of Causal Analysis For Social Research

Author: Stephen L. Morgan
Publisher: Springer Science & Business Media
ISBN: 9400760949
Size: 51.61 MB
Format: PDF
View: 3477
Download
What constitutes a causal explanation, and must an explanation be causal? What warrants a causal inference, as opposed to a descriptive regularity? What techniques are available to detect when causal effects are present, and when can these techniques be used to identify the relative importance of these effects? What complications do the interactions of individuals create for these techniques? When can mixed methods of analysis be used to deepen causal accounts? Must causal claims include generative mechanisms, and how effective are empirical methods designed to discover them? The Handbook of Causal Analysis for Social Research tackles these questions with nineteen chapters from leading scholars in sociology, statistics, public health, computer science, and human development.

Causality Probability And Time

Author: Samantha Kleinberg
Publisher: Cambridge University Press
ISBN: 1107026482
Size: 39.39 MB
Format: PDF, Docs
View: 4369
Download
"This book presents a new approach to causal inference and explanation, addressing both the timing and complexity of relationships. The method's feasibility and success is demonstrated through theoretical and experimental case studies"--

Design Of Observational Studies

Author: Paul R. Rosenbaum
Publisher: Springer Science & Business Media
ISBN: 1441912134
Size: 22.94 MB
Format: PDF, ePub
View: 1043
Download
An observational study is an empiric investigation of effects caused by treatments when randomized experimentation is unethical or infeasible. Observational studies are common in most fields that study the effects of treatments on people, including medicine, economics, epidemiology, education, psychology, political science and sociology. The quality and strength of evidence provided by an observational study is determined largely by its design. Design of Observational Studies is both an introduction to statistical inference in observational studies and a detailed discussion of the principles that guide the design of observational studies. Design of Observational Studies is divided into four parts. Chapters 2, 3, and 5 of Part I cover concisely, in about one hundred pages, many of the ideas discussed in Rosenbaum’s Observational Studies (also published by Springer) but in a less technical fashion. Part II discusses the practical aspects of using propensity scores and other tools to create a matched comparison that balances many covariates. Part II includes a chapter on matching in R. In Part III, the concept of design sensitivity is used to appraise the relative ability of competing designs to distinguish treatment effects from biases due to unmeasured covariates. Part IV discusses planning the analysis of an observational study, with particular reference to Sir Ronald Fisher’s striking advice for observational studies, "make your theories elaborate." The second edition of his book, Observational Studies, was published by Springer in 2002.