Capillary Flows With Forming Interfaces

Author: Yulii D. Shikhmurzaev
Publisher: CRC Press
ISBN: 9781584887492
Size: 51.36 MB
Format: PDF, Kindle
View: 1323
Download
Capillary Flows with Forming Interfaces explores numerous theoretical problems that arise in the mathematical description of capillary flows. It focuses on developing a unified approach to a variety of seemingly very different capillary flows of practical importance where classical fluid mechanics leads to nonphysical results. The book begins with a review of the conceptual framework of fluid mechanics and then proceeds to analyze the roots of singularities, such as the moving contact-line problem and the capillary breakup problem. The author then examines how different singular flows can be described as particular cases of a general physical phenomenon of interface formation. He illustrates the developed mathematical models and experimentally verifies them through a number of example problems relevant to engineering applications. The conceptual framework provided in this reference enables further progress in developing mathematical models of capillary flows. The book also allows readers to make informed strategic choices regarding available numerical codes and the in-house development of these codes.

Singular Phenomena And Scaling In Mathematical Models

Author: Michael Griebel
Publisher: Springer Science & Business Media
ISBN: 3319007866
Size: 71.43 MB
Format: PDF, ePub, Docs
View: 1492
Download
The book integrates theoretical analysis, numerical simulation and modeling approaches for the treatment of singular phenomena. The projects covered focus on actual applied problems, and develop qualitatively new and mathematically challenging methods for various problems from the natural sciences. Ranging from stochastic and geometric analysis over nonlinear analysis and modelling to numerical analysis and scientific computation, the book is divided into the three sections: A) Scaling limits of diffusion processes and singular spaces, B) Multiple scales in mathematical models of materials science and biology and C) Numerics for multiscale models and singular phenomena. Each section addresses the key aspects of multiple scales and model hierarchies, singularities and degeneracies, and scaling laws and self-similarity.

Colloid And Interface Chemistry For Nanotechnology

Author: Peter Kralchevsky
Publisher: CRC Press
ISBN: 1466569069
Size: 10.87 MB
Format: PDF, ePub
View: 3299
Download
Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006–2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science and Technology (COST), allowing the coordination of nationally funded research across Europe. With contributions by leading experts, this book covers a wide range of topics. Chapters are grouped into three sections: "Nanoparticle Synthesis and Characterization," "New Experimental Tools and Interpretation," and "Nanocolloidal Dispersions and Interfaces." The topics covered belong to six basic research areas: (1) The synthesis of nanostructured materials of well-defined size and function; (2) Analytical methods and tools for control and characterization of synthesized nanomaterials; (3) Self-assembly of nanomaterials, such as microemulsions and micelles, and their applications; (4) Bioinspired nanostructured materials—structure, properties, and applications; (5) Design of active, soft functional interfaces with unique properties for sensors, catalysts, and biomedical assays; and (6) Nanoscale elements in soft nanoscale devices for applications in analytical and biomedical sciences. This book describes highlights in nanotechnology based on state-of-the-art principles in colloid and interface science, demonstrating how great progress in the various branches of nanotechnology can be achieved. The application of these principles allows for the development of new experimental and theoretical tools.

Computational Methods For Complex Liquid Fluid Interfaces

Author: Mohammad Taeibi Rahni
Publisher: CRC Press
ISBN: 1498722091
Size: 34.84 MB
Format: PDF
View: 1515
Download
Computational Methods for Complex Liquid-Fluid Interfaces highlights key computational challenges involved in the two-way coupling of complex liquid-fluid interfaces. The book covers a variety of cutting-edge experimental and computational techniques ranging from macro- to meso- and microscale approaches (including pivotal applications). As examples, the text: defines the most important interfacial quantities and their experimental investigations, providing theoretical background and detailed solutions, describes vital techniques used in interfacial flow problems, such as modern meshless numerical methods and conventional computational fluid dynamics methods, and discusses the technicalities of correctly using the computational methods developed for interfacial flows, as well as the simulation of interesting interfacial flow physics. Edited and authored by leading scientists and researchers, Computational Methods for Complex Liquid-Fluid Interfaces offers an authoritative and state-of-the-art overview of computational methodologies and simulation techniques for the quantification of interfacial quantities.

Particles At Fluid Interfaces And Membranes

Author: Peter A. Kralchevsky
Publisher: Elsevier Science Limited
ISBN:
Size: 36.13 MB
Format: PDF, Mobi
View: 7158
Download
Planar fluid interfaces -- Interfaces of moderate curvature : theory of capillarity -- Surface bending moment and curvature elastic moduli -- General curved interfaces and biomembranes -- Liquid films and interactions between particle and surface -- Particles at interfaces : deformations and hydrodynamic interactions -- Lateral capillary forces between partially immersed bodies -- Lateral capillary forces between floating particles -- Capillary forces between particles bound to a spherical interface -- Mechanics of lipid membranes and interaction between inclusions -- Capillary bridges and capillary-bridge forces -- Capillary forces between particles of irregular contact line -- Two-dimensional crystallization of particulates and proteins -- Effect of oil drops and particulates on the stability of foams.

Waves On Fluid Interfaces

Author: Richard E. Meyer
Publisher: Academic Press
ISBN: 1483265145
Size: 64.25 MB
Format: PDF, ePub
View: 861
Download
Mathematics Research Center Symposium: Waves on Fluid Interfaces covers the proceedings of a symposium conducted by the Mathematics Research Center of the University of Wisconsin-Madison on October 18-20, 1982. The book focuses on nonlinear instabilities of classical interfaces, physical structure of real interfaces, and the challenges these reactions pose to the understanding of fluids. The selection first elaborates on finite-amplitude interfacial waves, instability of finite-amplitude interfacial waves, and finite-amplitude water waves with surface tension. Discussions focus on reformulation as an integro-differential equation, perturbation solutions, results for interfacial waves with current jump, wave of zero height, weakly nonlinear waves, and numerical methods. The text then takes a look at generalized vortex methods for free-surface flows; a review of solution methods for viscous flow in the presence of deformable boundaries; and existence criteria for fluid interfaces in the absence of gravity. The book ponders on the endothelial interface between tissue and blood, moving contact line, rupture of thin liquid films, film waves, and interfacial instabilities caused by air flow over a thin liquid layer. Topics include stability analysis of liquid film, interpretation of film instabilities, simple film, linear stability theory, inadequacy of the usual hydrodynamic model, and marcomolecule transport across the artery wall. The selection is a valuable source of data for researchers interested in the reactions of waves on fluid interfaces.

Capillarity And Wetting Phenomena

Author: Pierre-Gilles de Gennes
Publisher: Springer Science & Business Media
ISBN: 9780387005928
Size: 32.13 MB
Format: PDF, Docs
View: 1046
Download
The study of capillarity is in the midst of a veritable explosion. Hence the temptation to write a new book, aiming at an audience of students. What is offered here is not a comprehensive review of the latest research but rather a compendium of principles. How does one turn a hydrophilic surface into one that is hydrophobic, and vice versa? We will describe a few solutions. Some rely on chemical treatments, such as coating a surface with a molecular layer. Others are based on physics, for instance by controlling the roughness of a surface. We will also examine the dynamics of wetting. Drops that spread spontaneously do so at a rate that slows down with time. They can be tricked into covering large areas by spreading them suddenly. We will describe a few of the many facets of their dynamical properties. Special additives are required for water to foam. Foams are desirable in a shampoo but can be a nightmare in a dishwasher detergent. Antifoam agents have been developed and are well known, but how do they work? It is also possible to generate bubbles and foams without special additives, for example in pure and viscous liquids such as glycerin, molten glass, and polymers. As we will see, the laws of draining and bursting then turn out to be quite different from the conventional ones. This book will enable the reader to understand in simple terms such questions that affect every day life -- questions that also come up during in industry. The aim is to view systems that often prove quite complex in a way that isolates a particular physical phenomenon, often avoiding descriptions requiring advanced numerical techniques will oftentimes in favor of qualitative arguments. This strategy may at times jeopardize scientific rigor, but it makes it possible to grasp things efficiently and to invent novel situations.

Gravity Capillary Free Surface Flows

Author: Jean-Marc Vanden-Broeck
Publisher: Cambridge University Press
ISBN: 0521811902
Size: 76.22 MB
Format: PDF, Docs
View: 5196
Download
Jean-Marc Vanden-Broeck's twenty years of experience contribute to this essential reference work for applied mathematicians and engineers. He demonstrates how gravity-capillary flows, in which the effects of pipe flow, gravity flow, and surface tension combine to produce a singular flow pattern, are utilized in many practical applications.

Capillary Fluid Exchange

Author: Joshua Scallan
Publisher: Morgan & Claypool Publishers
ISBN: 1615040668
Size: 36.52 MB
Format: PDF
View: 4820
Download
The partition of fluid between the vascular and interstitial compartments is regulated by forces (hydrostatic and oncotic) operating across the microvascular walls and the surface areas of permeable structures comprising the endothelial barrier to fluid and solute exchange, as well as within the extracellular matrix and lymphatics. In addition to its role in the regulation of vascular volume, transcapillary fluid filtration also allows for continuous turnover of water bathing tissue cells, providing the medium for diffusional flux of oxygen and nutrients required for cellular metabolism and removal of metabolic byproducts. Transendothelial volume flow has also been shown to influence vascular smooth muscle tone in arterioles, hydraulic conductivity in capillaries, and neutrophil transmigration across postcapillary venules, while the flow of this filtrate through the interstitial spaces functions to modify the activities of parenchymal, resident tissue, and metastasizing tumor cells. Likewise, the flow of lymph, which is driven by capillary filtration, is important for the transport of immune and tumor cells, antigen delivery to lymph nodes, and for return of filtered fluid and extravasated proteins to the blood. Given this background, the aims of this treatise are to summarize our current understanding of the factors involved in the regulation of transcapillary fluid movement, how fluid movements across the endothelial barrier and through the interstitium and lymphatic vessels influence cell function and behavior, and the pathophysiology of edema formation. Table of Contents: Fluid Movement Across the Endothelial Barrier / The Interstitium / The Lymphatic Vasculature / Pathophysiology of Edema Formation