Beyond The Quartic Equation

Author: R. Bruce King
Publisher: Springer Science & Business Media
ISBN: 9780817648497
Size: 35.72 MB
Format: PDF, ePub
View: 2005
The objective of this book is to present for the first time the complete algorithm for roots of the general quintic equation with enough background information to make the key ideas accessible to non-specialists and even to mathematically oriented readers who are not professional mathematicians. The book includes an initial introductory chapter on group theory and symmetry, Galois theory and Tschirnhausen transformations, and some elementary properties of elliptic function in order to make some of the key ideas more accessible to less sophisticated readers. The book also includes a discussion of the much simpler algorithms for roots of the general quadratic, cubic, and quartic equations before discussing the algorithm for the roots of the general quintic equation. A brief discussion of algorithms for roots of general equations of degrees higher than five is also included. "If you want something truly unusual, try [this book] by R. Bruce King, which revives some fascinating, long-lost ideas relating elliptic functions to polynomial equations." --New Scientist

Basic Complex Analysis A Comprehensive Course In Analysis Part 2a

Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 1470411008
Size: 50.32 MB
Format: PDF, Mobi
View: 2861
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy's view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being the Cauchy integral formula and contour integration. For Riemann, the geometry of the complex plane is central, with key topics being fractional linear transformations and conformal mapping. For Weierstrass, the power series is king, with key topics being spaces of analytic functions, the product formulas of Weierstrass and Hadamard, and the Weierstrass theory of elliptic functions. Subjects in this volume that are often missing in other texts include the Cauchy integral theorem when the contour is the boundary of a Jordan region, continued fractions, two proofs of the big Picard theorem, the uniformization theorem, Ahlfors's function, the sheaf of analytic germs, and Jacobi, as well as Weierstrass, elliptic functions.

Advanced Modern Algebra

Author: Joseph J. Rotman
Publisher: American Mathematical Soc.
ISBN: 0821847414
Size: 20.81 MB
Format: PDF, ePub
View: 531
"This book is designed as a text for the first year of graduate algebra, but it can also serve as a reference since it contains more advanced topics as well. This second edition has a different organization than the first. It begins with a discussion of the cubic and quartic equations, which leads into permutations, group theory, and Galois theory (for finite extensions; infinite Galois theory is discussed later in the book). The study of groups continues with finite abelian groups (finitely generated groups are discussed later, in the context of module theory), Sylow theorems, simplicity of projective unimodular groups, free groups and presentations, and the Nielsen-Schreier theorem (subgroups of free groups are free). The study of commutative rings continues with prime and maximal ideals, unique factorization, noetherian rings, Zorn's lemma and applications, varieties, and Gr'obner bases. Next, noncommutative rings and modules are discussed, treating tensor product, projective, injective, and flat modules, categories, functors, and natural transformations, categorical constructions (including direct and inverse limits), and adjoint functors. Then follow group representations: Wedderburn-Artin theorems, character theory, theorems of Burnside and Frobenius, division rings, Brauer groups, and abelian categories. Advanced linear algebra treats canonical forms for matrices and the structure of modules over PIDs, followed by multilinear algebra. Homology is introduced, first for simplicial complexes, then as derived functors, with applications to Ext, Tor, and cohomology of groups, crossed products, and an introduction to algebraic K-theory. Finally, the author treats localization, Dedekind rings and algebraic number theory, and homological dimensions. The book ends with the proof that regular local rings have unique factorization."--Publisher's description.

Abel S Proof

Author: Peter Pesic
Publisher: MIT Press
ISBN: 9780262661829
Size: 22.32 MB
Format: PDF, Docs
View: 325
The intellectual and human story of a mathematical proof that transformed our ideas about mathematics.

Galois Theory Third Edition

Author: Ian Stewart
Publisher: CRC Press
ISBN: 1584883936
Size: 29.53 MB
Format: PDF, Docs
View: 3350
Ian Stewart's Galois Theory has been in print for 30 years. Resoundingly popular, it still serves its purpose exceedingly well. Yet mathematics education has changed considerably since 1973, when theory took precedence over examples, and the time has come to bring this presentation in line with more modern approaches. To this end, the story now begins with polynomials over the complex numbers, and the central quest is to understand when such polynomials have solutions that can be expressed by radicals. Reorganization of the material places the concrete before the abstract, thus motivating the general theory, but the substance of the book remains the same.

Classical Algebra

Author: Roger Cooke
Publisher: Wiley-Blackwell
Size: 19.29 MB
Format: PDF, ePub, Docs
View: 3317
This insightful book combines the history, pedagogy, and popularization of algebra to present a unified discussion of the subject. Classical Algebra provides a complete and contemporary perspective on classical polynomial algebra through the exploration of how it was developed and how it exists today. With a focus on prominent areas such as the numerical solutions of equations, the systematic study of equations, and Galois theory, this book facilitates a thorough understanding of algebra and illustrates how the concepts of modern algebra originally developed from classical algebraic precursors. This book successfully ties together the disconnect between classical and modern algebraand provides readers with answers to many fascinating questions that typically go unexamined, including: What is algebra about? How did it arise? What uses does it have? How did it develop? What problems and issues have occurred in its history? How were these problems and issues resolved? The author answers these questions and more, shedding light on a rich history of the subject-from ancient and medieval times to the present. Structured as eleven "lessons" that are intended to give the reader further insight on classical algebra, each chapter contains thought-provoking problems and stimulating questions, for which complete answers are provided in an appendix. Complemented with a mixture of historical remarks and analyses of polynomial equations throughout, Classical Algebra: Its Nature, Origins, and Uses is an excellent book for mathematics courses at the undergraduate level. It also serves as a valuable resource to anyone with a general interest in mathematics.

A Concrete Introduction To Higher Algebra

Author: Lindsay Childs
Publisher: Springer Science & Business Media
ISBN: 1468400657
Size: 20.30 MB
Format: PDF, ePub, Mobi
View: 4168
This book is written as an introduction to higher algebra for students with a background of a year of calculus. The book developed out of a set of notes for a sophomore-junior level course at the State University of New York at Albany entitled Classical Algebra. In the 1950s and before, it was customary for the first course in algebra to be a course in the theory of equations, consisting of a study of polynomials over the complex, real, and rational numbers, and, to a lesser extent, linear algebra from the point of view of systems of equations. Abstract algebra, that is, the study of groups, rings, and fields, usually followed such a course. In recent years the theory of equations course has disappeared. Without it, students entering abstract algebra courses tend to lack the experience in the algebraic theory of the basic classical examples of the integers and polynomials necessary for understanding, and more importantly, for ap preciating the formalism. To meet this problem, several texts have recently appeared introducing algebra through number theory.

A History Of Abstract Algebra

Author: Israel Kleiner
Publisher: Springer Science & Business Media
ISBN: 0817646841
Size: 12.24 MB
Format: PDF, ePub
View: 1045
This book explores the history of abstract algebra. It shows how abstract algebra has arisen in attempting to solve some of these classical problems, providing a context from which the reader may gain a deeper appreciation of the mathematics involved.