Bayesian Data Analysis Third Edition

Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Size: 12.20 MB
Format: PDF
View: 3881
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Bayesian Methods For Data Analysis Third Edition

Author: Bradley P. Carlin
Publisher: CRC Press
ISBN: 9781584886983
Size: 45.91 MB
Format: PDF, ePub, Docs
View: 5280
Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via Markov chain Monte Carlo (MCMC) methods and related data analytic techniques. New to the Third Edition New data examples, corresponding R and WinBUGS code, and homework problems Explicit descriptions and illustrations of hierarchical modeling—now commonplace in Bayesian data analysis A new chapter on Bayesian design that emphasizes Bayesian clinical trials A completely revised and expanded section on ranking and histogram estimation A new case study on infectious disease modeling and the 1918 flu epidemic A solutions manual for qualifying instructors that contains solutions, computer code, and associated output for every homework problem—available both electronically and in print Ideal for Anyone Performing Statistical Analyses Focusing on applications from biostatistics, epidemiology, and medicine, this text builds on the popularity of its predecessors by making it suitable for even more practitioners and students.

Bayesian Models For Astrophysical Data

Author: Joseph M. Hilbe
Publisher: Cambridge University Press
ISBN: 1108210740
Size: 66.88 MB
Format: PDF, Kindle
View: 5404
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

Bayes And Empirical Bayes Methods For Data Analysis Second Edition

Author: Bradley P. Carlin
Publisher: Chapman and Hall/CRC
ISBN: 9781584881704
Size: 31.51 MB
Format: PDF, Kindle
View: 421
In recent years, Bayes and empirical Bayes (EB) methods have continued to increase in popularity and impact. Building on the first edition of their popular text, Carlin and Louis introduce these methods, demonstrate their usefulness in challenging applied settings, and show how they can be implemented using modern Markov chain Monte Carlo (MCMC) methods. Their presentation is accessible to those new to Bayes and empirical Bayes methods, while providing in-depth coverage valuable to seasoned practitioners. With its broad appeal as a text for those in biomedical science, education, social science, agriculture, and engineering, this second edition offers a relatively gentle and comprehensive introduction for students and practitioners already familiar with more traditional frequentist statistical methods. Focusing on practical tools for data analysis, the book shows how properly structured Bayes and EB procedures typically have good frequentist and Bayesian performance, both in theory and in practice.

Markov Chain Monte Carlo

Author: Dani Gamerman
Publisher: CRC Press
ISBN: 9781584885870
Size: 41.51 MB
Format: PDF, Kindle
View: 6445
While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration. Major changes from the previous edition: · More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms · Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection · Discussion of computation using both R and WinBUGS · Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web · Sections on spatial models and model adequacy The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses.

Bayesian Ideas And Data Analysis

Author: Ronald Christensen
Publisher: CRC Press
ISBN: 1439803552
Size: 51.53 MB
Format: PDF, Kindle
View: 2922
Emphasizing the use of WinBUGS and R to analyze real data, Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians presents statistical tools to address scientific questions. It highlights foundational issues in statistics, the importance of making accurate predictions, and the need for scientists and statisticians to collaborate in analyzing data. The WinBUGS code provided offers a convenient platform to model and analyze a wide range of data. The first five chapters of the book contain core material that spans basic Bayesian ideas, calculations, and inference, including modeling one and two sample data from traditional sampling models. The text then covers Monte Carlo methods, such as Markov chain Monte Carlo (MCMC) simulation. After discussing linear structures in regression, it presents binomial regression, normal regression, analysis of variance, and Poisson regression, before extending these methods to handle correlated data. The authors also examine survival analysis and binary diagnostic testing. A complementary chapter on diagnostic testing for continuous outcomes is available on the book’s website. The last chapter on nonparametric inference explores density estimation and flexible regression modeling of mean functions. The appropriate statistical analysis of data involves a collaborative effort between scientists and statisticians. Exemplifying this approach, Bayesian Ideas and Data Analysis focuses on the necessary tools and concepts for modeling and analyzing scientific data. Data sets and codes are provided on a supplemental website.

Survival Analysis Using S

Author: Mara Tableman
Publisher: CRC Press
ISBN: 9780203501412
Size: 49.39 MB
Format: PDF, ePub, Mobi
View: 7734
Survival Analysis Using S: Analysis of Time-to-Event Data is designed as a text for a one-semester or one-quarter course in survival analysis for upper-level or graduate students in statistics, biostatistics, and epidemiology. Prerequisites are a standard pre-calculus first course in probability and statistics, and a course in applied linear regression models. No prior knowledge of S or R is assumed. A wide choice of exercises is included, some intended for more advanced students with a first course in mathematical statistics. The authors emphasize parametric log-linear models, while also detailing nonparametric procedures along with model building and data diagnostics. Medical and public health researchers will find the discussion of cut point analysis with bootstrap validation, competing risks and the cumulative incidence estimator, and the analysis of left-truncated and right-censored data invaluable. The bootstrap procedure checks robustness of cut point analysis and determines cut point(s). In a chapter written by Stephen Portnoy, censored regression quantiles - a new nonparametric regression methodology (2003) - is developed to identify important forms of population heterogeneity and to detect departures from traditional Cox models. By generalizing the Kaplan-Meier estimator to regression models for conditional quantiles, this methods provides a valuable complement to traditional Cox proportional hazards approaches.

Extending The Linear Model With R

Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 9780203492284
Size: 32.32 MB
Format: PDF, Mobi
View: 5968
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.

The Analysis Of Time Series

Author: Chris Chatfield
Publisher: CRC Press
ISBN: 9780203491683
Size: 60.58 MB
Format: PDF, Kindle
View: 1365
Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. With each successive edition, bestselling author Chris Chatfield has honed and refined his presentation, updated the material to reflect advances in the field, and presented interesting new data sets. The sixth edition is no exception. It provides an accessible, comprehensive introduction to the theory and practice of time series analysis. The treatment covers a wide range of topics, including ARIMA probability models, forecasting methods, spectral analysis, linear systems, state-space models, and the Kalman filter. It also addresses nonlinear, multivariate, and long-memory models. The author has carefully updated each chapter, added new discussions, incorporated new datasets, and made those datasets available for download from A free online appendix on time series analysis using R can be accessed at Highlights of the Sixth Edition: A new section on handling real data New discussion on prediction intervals A completely revised and restructured chapter on more advanced topics, with new material on the aggregation of time series, analyzing time series in finance, and discrete-valued time series A new chapter of examples and practical advice Thorough updates and revisions throughout the text that reflect recent developments and dramatic changes in computing practices over the last few years The analysis of time series can be a difficult topic, but as this book has demonstrated for two-and-a-half decades, it does not have to be daunting. The accessibility, polished presentation, and broad coverage of The Analysis of Time Series make it simply the best introduction to the subject available.

The Bugs Book

Author: David Lunn
Publisher: CRC Press
ISBN: 1584888490
Size: 18.98 MB
Format: PDF
View: 6431
Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines. The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributions—all those aspects of the "art" of modelling that are easily overlooked in more theoretical expositions. More pragmatic than ideological, the authors systematically work through the large range of "tricks" that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas. Full code and data for examples, exercises, and some solutions can be found on the book’s website.