Asymptotics In Statistics

Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 146840377X
Size: 38.53 MB
Format: PDF, Mobi
View: 2657
Download
In the summer of 1968 one of the present authors (LLC) had the pleasure of giving a sequence of lectures at the University of Mon treal. Lecture notes were collected and written out by Drs. Catherine Doleans, Jean Haezendonck and Roch Roy. They were published in French by the Presses of the University of Montreal as part of their series of Seminaires de Mathematiques Superieures. Twenty years later it was decided that a Chinese translation could be useful, but upon prodding by Professor Shanti Gupta at Purdue we concluded that the notes should be updated and rewritten in English and in Chinese. The present volume is the result of that effort. We have preserved the general outline of the lecture notes, but we have deleted obsolete material and sketched some of the results acquired during the past twenty years. This means that while the original notes concentrated on the LAN situation we have included here some results of Jeganathan and others on the LAMN case. Also included are versions of the Hajek-Le Cam asymptotic minimax and convolution theorems with some of their implications. We have not attempted to give complete coverage of the subject and have often stated theorems without indicating their proofs.

Asymptotics In Statistics

Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 9780387950365
Size: 44.24 MB
Format: PDF, Kindle
View: 2339
Download
This volume is the second edition of a work that presents a coherent introduction to the subject of asymptotic statistics as it has developed in the past 50 years. The second edition differs from the first in that it has been made more 'reader friendly'. It also includes a new chapter, Chapter 4, on Gaussian and Poisson experiments because of their growing role in the field, especially in nonparametrics and semi-parametrics. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been ampliefied. Much of the material has been taught in a second year graduate course at Berkeley for 30 years. It represents a link between traditional material including maximum likelihood, and Wald's Theory of Statistical Decision Functions together with comparison and distances for experiments. This volume is not intended to replace monographs on specialized subjects, but it will help to place them in a coherent perspective.Lucien Le Cam is Professor of Statistics and Mathematics (Emeritus) at the University of California, Berkeley. He is the author of numerous papers on asymptotics and Asymptotic Methods in Statistical Decision Theory, Springer Verlag (1986). He was co-editor, with J. Neyman and E. Scott of the Berkeley Symposia on Mathematical Statistics and Probability. Grace Lo Yang is Professor, Department of Mathematics, University of Maryland, College Park. She is a long time holder of a Faculty Appointment at the National Institute of Standards and Technology, Gaithersburg, MD. Her research activities include stochastic modeling in physical sciences and theory of incomplete data.

Asymptotic Methods In Statistical Decision Theory

Author: Lucien Le Cam
Publisher: Springer Science & Business Media
ISBN: 1461249465
Size: 12.55 MB
Format: PDF, Kindle
View: 1820
Download
This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.

Asymptotic Theory Of Statistics And Probability

Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 0387759700
Size: 41.99 MB
Format: PDF
View: 1950
Download
This unique book delivers an encyclopedic treatment of classic as well as contemporary large sample theory, dealing with both statistical problems and probabilistic issues and tools. The book is unique in its detailed coverage of fundamental topics. It is written in an extremely lucid style, with an emphasis on the conceptual discussion of the importance of a problem and the impact and relevance of the theorems. There is no other book in large sample theory that matches this book in coverage, exercises and examples, bibliography, and lucid conceptual discussion of issues and theorems.

Introduction To Nonparametric Estimation

Author: Alexandre B. Tsybakov
Publisher: Springer Science & Business Media
ISBN: 0387790527
Size: 60.76 MB
Format: PDF, Docs
View: 2498
Download
Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.

Statistical Decision Theory

Author: F. Liese
Publisher: Springer Science & Business Media
ISBN: 0387731946
Size: 58.90 MB
Format: PDF, Mobi
View: 4684
Download
For advanced graduate students, this book is a one-stop shop that presents the main ideas of decision theory in an organized, balanced, and mathematically rigorous manner, while observing statistical relevance. All of the major topics are introduced at an elementary level, then developed incrementally to higher levels. The book is self-contained as it provides full proofs, worked-out examples, and problems. The authors present a rigorous account of the concepts and a broad treatment of the major results of classical finite sample size decision theory and modern asymptotic decision theory. With its broad coverage of decision theory, this book fills the gap between standard graduate texts in mathematical statistics and advanced monographs on modern asymptotic theory.

Asymptotic Theory Of Statistical Inference For Time Series

Author: Masanobu Taniguchi
Publisher: Springer Science & Business Media
ISBN: 146121162X
Size: 56.44 MB
Format: PDF, ePub
View: 1711
Download
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Asymptotic Efficiency Of Statistical Estimators Concepts And Higher Order Asymptotic Efficiency

Author: Masafumi Akahira
Publisher: Springer Science & Business Media
ISBN: 1461259274
Size: 36.45 MB
Format: PDF, Kindle
View: 7242
Download
This monograph is a collection of results recently obtained by the authors. Most of these have been published, while others are awaitlng publication. Our investigation has two main purposes. Firstly, we discuss higher order asymptotic efficiency of estimators in regular situa tions. In these situations it is known that the maximum likelihood estimator (MLE) is asymptotically efficient in some (not always specified) sense. However, there exists here a whole class of asymptotically efficient estimators which are thus asymptotically equivalent to the MLE. It is required to make finer distinctions among the estimators, by considering higher order terms in the expansions of their asymptotic distributions. Secondly, we discuss asymptotically efficient estimators in non regular situations. These are situations where the MLE or other estimators are not asymptotically normally distributed, or where l 2 their order of convergence (or consistency) is not n / , as in the regular cases. It is necessary to redefine the concept of asympto tic efficiency, together with the concept of the maximum order of consistency. Under the new definition as asymptotically efficient estimator may not always exist. We have not attempted to tell the whole story in a systematic way. The field of asymptotic theory in statistical estimation is relatively uncultivated. So, we have tried to focus attention on such aspects of our recent results which throw light on the area.

Theoretical Statistics

Author: Robert W. Keener
Publisher: Springer Science & Business Media
ISBN: 9780387938394
Size: 74.63 MB
Format: PDF, ePub, Mobi
View: 5721
Download
Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.

Elements Of Large Sample Theory

Author: E.L. Lehmann
Publisher: Springer Science & Business Media
ISBN: 0387227296
Size: 56.21 MB
Format: PDF, ePub, Mobi
View: 3273
Download
Written by one of the main figures in twentieth century statistics, this book provides a unified treatment of first-order large-sample theory. It discusses a broad range of applications including introductions to density estimation, the bootstrap, and the asymptotics of survey methodology. The book is written at an elementary level making it accessible to most readers.