Analysis Of Financial Time Series

Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 0471746185
Size: 71.38 MB
Format: PDF, ePub, Mobi
View: 3191
Download
Provides statistical tools and techniques needed to understand today's financial markets The Second Edition of this critically acclaimed text provides a comprehensive and systematic introduction to financial econometric models and their applications in modeling and predicting financial time series data. This latest edition continues to emphasize empirical financial data and focuses on real-world examples. Following this approach, readers will master key aspects of financial time series, including volatility modeling, neural network applications, market microstructure and high-frequency financial data, continuous-time models and Ito's Lemma, Value at Risk, multiple returns analysis, financial factor models, and econometric modeling via computation-intensive methods. The author begins with the basic characteristics of financial time series data, setting the foundation for the three main topics: Analysis and application of univariate financial time series Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text, including the addition of S-Plus® commands and illustrations. Exercises have been thoroughly updated and expanded and include the most current data, providing readers with more opportunities to put the models and methods into practice. Among the new material added to the text, readers will find: Consistent covariance estimation under heteroscedasticity and serial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing a deeper understanding of financial markets through firsthand experience in working with financial data. This is an ideal textbook for MBA students as well as a reference for researchers and professionals in business and finance.

Analysis Of Financial Time Series

Author: Ruey S. Tsay
Publisher: Wiley-Interscience
ISBN: 9780471690740
Size: 45.78 MB
Format: PDF, ePub, Mobi
View: 1819
Download
Provides statistical tools and techniques needed to understand today's financial markets The Second Edition of this critically acclaimed text provides a comprehensive and systematic introduction to financial econometric models and their applications in modeling and predicting financial time series data. This latest edition continues to emphasize empirical financial data and focuses on real-world examples. Following this approach, readers will master key aspects of financial time series, including volatility modeling, neural network applications, market microstructure and high-frequency financial data, continuous-time models and Ito's Lemma, Value at Risk, multiple returns analysis, financial factor models, and econometric modeling via computation-intensive methods. The author begins with the basic characteristics of financial time series data, setting the foundation for the three main topics: Analysis and application of univariate financial time series Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text, including the addition of S-Plus® commands and illustrations. Exercises have been thoroughly updated and expanded and include the most current data, providing readers with more opportunities to put the models and methods into practice. Among the new material added to the text, readers will find: Consistent covariance estimation under heteroscedasticity and serial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing a deeper understanding of financial markets through firsthand experience in working with financial data. This is an ideal textbook for MBA students as well as a reference for researchers and professionals in business and finance.

Analysis Of Financial Time Series

Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 9781118017098
Size: 24.78 MB
Format: PDF, Kindle
View: 1589
Download
This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.

An Introduction To Analysis Of Financial Data With R

Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 1119013461
Size: 70.63 MB
Format: PDF, ePub, Docs
View: 4443
Download
A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-world empirical research. The author supplies a hands-on introduction to the analysis of financial data using the freely available R software package and case studies to illustrate actual implementations of the discussed methods. The book begins with the basics of financial data, discussing their summary statistics and related visualization methods. Subsequent chapters explore basic time series analysis and simple econometric models for business, finance, and economics as well as related topics including: Linear time series analysis, with coverage of exponential smoothing for forecasting and methods for model comparison Different approaches to calculating asset volatility and various volatility models High-frequency financial data and simple models for price changes, trading intensity, and realized volatility Quantitative methods for risk management, including value at risk and conditional value at risk Econometric and statistical methods for risk assessment based on extreme value theory and quantile regression Throughout the book, the visual nature of the topic is showcased through graphical representations in R, and two detailed case studies demonstrate the relevance of statistics in finance. A related website features additional data sets and R scripts so readers can create their own simulations and test their comprehension of the presented techniques. An Introduction to Analysis of Financial Data with R is an excellent book for introductory courses on time series and business statistics at the upper-undergraduate and graduate level. The book is also an excellent resource for researchers and practitioners in the fields of business, finance, and economics who would like to enhance their understanding of financial data and today's financial markets.

Multivariate Time Series Analysis

Author: Ruey S. Tsay
Publisher: John Wiley & Sons
ISBN: 1118617754
Size: 74.99 MB
Format: PDF, Mobi
View: 5719
Download
An accessible guide to the multivariate time series tools used in numerous real-world applications Multivariate Time Series Analysis: With R and Financial Applications is the much anticipated sequel coming from one of the most influential and prominent experts on the topic of time series. Through a fundamental balance of theory and methodology, the book supplies readers with a comprehensible approach to financial econometric models and their applications to real-world empirical research. Differing from the traditional approach to multivariate time series, the book focuses on reader comprehension by emphasizing structural specification, which results in simplified parsimonious VAR MA modeling. Multivariate Time Series Analysis: With R and Financial Applications utilizes the freely available R software package to explore complex data and illustrate related computation and analyses. Featuring the techniques and methodology of multivariate linear time series, stationary VAR models, VAR MA time series and models, unitroot process, factor models, and factor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce the presented content • User-friendly R subroutines and research presented throughout to demonstrate modern applications • Numerous datasets and subroutines to provide readers with a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbook for graduate-level courses on time series and quantitative finance and upper-undergraduate level statistics courses in time series. The book is also an indispensable reference for researchers and practitioners in business, finance, and econometrics.

The Econometric Modelling Of Financial Time Series

Author: Terence C. Mills
Publisher: Cambridge University Press
ISBN: 1139470817
Size: 12.58 MB
Format: PDF, Kindle
View: 4721
Download
Terence Mills' best-selling graduate textbook provides detailed coverage of research techniques and findings relating to the empirical analysis of financial markets. In its previous editions it has become required reading for many graduate courses on the econometrics of financial modelling. This third edition, co-authored with Raphael Markellos, contains a wealth of material reflecting the developments of the last decade. Particular attention is paid to the wide range of nonlinear models that are used to analyse financial data observed at high frequencies and to the long memory characteristics found in financial time series. The central material on unit root processes and the modelling of trends and structural breaks has been substantially expanded into a chapter of its own. There is also an extended discussion of the treatment of volatility, accompanied by a new chapter on nonlinearity and its testing.

Analysis Of Financial Time Series 2nd Ed

Author: Ruey S. Tsay
Publisher:
ISBN: 9788126523696
Size: 77.51 MB
Format: PDF
View: 4928
Download
Market_Desc: Ideal as a fundamental introduction to time series for MBA students or as a reference for researchers and practitioners in business and finance Special Features: · Timely topics and recent results include: Value at Risk (VaR); high-frequency financial data analysis; MCMC methods; derivative pricing using jump diffusion with closed-form formulas; VaR calculation using extreme value theory based on nonhomogeneous two-dimensional Poisson process; and multivariate volatility models with time-varying correlations.· New topics to this edition include: Finmetrics in S-plus; estimation of stochastic diffusion equations for derivative pricing; use of realized volatilities; state=space model; and Kalman filter.· The second edition also includes new developments in financial econometrics and more examples of applications in finance.· Emphasis is placed on empirical financial data.· Chapter exercises have been increased in an effort to further reinforce the methods and applications in the text. About The Book: This book provides a comprehensive and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: analysis and application of univariate financial time series; the return series of multiple assets; and Bayesian inference in finance methods. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series, and gain experience in financial applications of various econometric methods.

Modelling Financial Time Series

Author: Stephen J. Taylor
Publisher: World Scientific
ISBN: 9812770852
Size: 19.20 MB
Format: PDF, Kindle
View: 3118
Download
This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.

Modeling Financial Time Series With S Plus

Author: Eric Zivot
Publisher: Springer Science & Business Media
ISBN: 9780387323480
Size: 14.51 MB
Format: PDF, ePub, Docs
View: 440
Download
This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. It is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This edition covers S+FinMetrics 2.0 and includes new chapters.

Econometric Analysis Of Financial And Economic Time Series

Author: Dek Terrell
Publisher: Emerald Group Publishing
ISBN: 0762312742
Size: 34.64 MB
Format: PDF, ePub
View: 1734
Download
The editors are pleased to offer the following papers to the reader in recognition and appreciation of the contributions to our literature made by Robert Engle and Sir Clive Granger, winners of the 2003 Nobel Prize in Economics. The basic themes of this part of Volume 20 of Advances in Econometrics are time varying betas of the capital asset pricing model, analysis of predictive densities of nonlinear models of stock returns, modelling multivariate dynamic correlations, flexible seasonal time series models, estimation of long-memory time series models, the application of the technique of boosting in volatility forecasting, the use of different time scales in GARCH modelling, out-of-sample evaluation of the ‘Fed Model' in stock price valuation, structural change as an alternative to long memory, the use of smooth transition auto-regressions in stochastic volatility modelling, the analysis of the “balanced-ness” of regressions analyzing Taylor-Type rules of the Fed Funds rate, a mixture-of-experts approach for the estimation of stochastic volatility, a modern assessment of Clive's first published paper on Sunspot activity, and a new class of models of tail-dependence in time series subject to jumps. *This Series: Aids in the diffusion of new econometric techniques * Emphasis is placed on expositional clarity and ease of assimilation for readers who are unfamiliar with a given topic of a volume *Illustrates new concepts