An Introduction To Numerical Analysis For Electrical And Computer Engineers

Author: Christopher J. Zarowski
Publisher: John Wiley & Sons
ISBN: 9780471650409
Size: 27.15 MB
Format: PDF, Docs
View: 700
Download
This book is an introduction to numerical analysis and intends to strike a balance between analytical rigor and the treatment of particular methods for engineering problems Emphasizes the earlier stages of numerical analysis for engineers with real-life problem-solving solutions applied to computing and engineering Includes MATLAB oriented examples An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Numerical And Analytical Methods With Matlab For Electrical Engineers

Author: William Bober
Publisher: CRC Press
ISBN: 1466576073
Size: 11.17 MB
Format: PDF, ePub
View: 6070
Download
Combining academic and practical approaches to this important topic, Numerical and Analytical Methods with MATLAB® for Electrical Engineers is the ideal resource for electrical and computer engineering students. Based on a previous edition that was geared toward mechanical engineering students, this book expands many of the concepts presented in that book and replaces the original projects with new ones intended specifically for electrical engineering students. This book includes: An introduction to the MATLAB programming environment Mathematical techniques for matrix algebra, root finding, integration, and differential equations More advanced topics, including transform methods, signal processing, curve fitting, and optimization An introduction to the MATLAB graphical design environment, Simulink Exploring the numerical methods that electrical engineers use for design analysis and testing, this book comprises standalone chapters outlining a course that also introduces students to computational methods and programming skills, using MATLAB as the programming environment. Helping engineering students to develop a feel for structural programming—not just button-pushing with a software program—the illustrative examples and extensive assignments in this resource enable them to develop the necessary skills and then apply them to practical electrical engineering problems and cases.

Fundamental Numerical Methods For Electrical Engineering

Author: Stanislaw Rosloniec
Publisher: Springer Science & Business Media
ISBN: 3540795197
Size: 27.86 MB
Format: PDF, ePub
View: 1238
Download
Stormy development of electronic computation techniques (computer systems and software), observed during the last decades, has made possible automation of data processing in many important human activity areas, such as science, technology, economics and labor organization. In a broadly understood technology area, this developmentledtoseparationofspecializedformsofusingcomputersforthedesign and manufacturing processes, that is: – computer-aided design (CAD) – computer-aided manufacture (CAM) In order to show the role of computer in the rst of the two applications m- tioned above, let us consider basic stages of the design process for a standard piece of electronic system, or equipment: – formulation of requirements concerning user properties (characteristics, para- ters) of the designed equipment, – elaboration of the initial, possibly general electric structure, – determination of mathematical model of the system on the basis of the adopted electric structure, – determination of basic responses (frequency- or time-domain) of the system, on the base of previously established mathematical model, – repeated modi cation of the adopted diagram (changing its structure or element values) in case, when it does not satisfy the adopted requirements, – preparation of design and technological documentation, – manufacturing of model (prototype) series, according to the prepared docum- tation, – testing the prototype under the aspect of its electric properties, mechanical du- bility and sensitivity to environment conditions, – modi cation of prototype documentation, if necessary, and handing over the documentation to series production. The most important stages of the process under discussion are illustrated in Fig. I. 1. xi xii Introduction Fig. I.

An Introduction To Matlab Programming And Numerical Methods For Engineers

Author: Timmy Siauw
Publisher: Academic Press
ISBN: 0127999140
Size: 48.19 MB
Format: PDF, Mobi
View: 5119
Download
Assuming no prior background in linear algebra or real analysis, An Introduction to MATLAB® Programming and Numerical Methods for Engineers enables you to develop good computational problem solving techniques through the use of numerical methods and the MATLAB® programming environment. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level allowing you to quickly apply results in practical settings. Tips, warnings, and "try this" features within each chapter help the reader develop good programming practices Chapter summaries, key terms, and functions and operators lists at the end of each chapter allow for quick access to important information At least three different types of end of chapter exercises — thinking, writing, and coding — let you assess your understanding and practice what you've learned

Numerical Analysis For Electromagnetic Integral Equations

Author: Karl F. Warnick
Publisher: Artech House
ISBN: 1596933348
Size: 17.46 MB
Format: PDF, Mobi
View: 2824
Download
This unique volume is the first book on integral equation-based methods that combines quantitative formulas for predicting numerical simulation accuracy together with rigorous error estimates and results for dozens of actual electromagnetics and wave propagation problems. You get the latest insights on accuracy-improving methods like regularization and error-increasing effects such as edge singularities and resonance, along with full details on how to determine mesh density, choice of basis functions, and other parameters needed to optimize any numerical simulation.

Numerical Methods For Scientists And Engineers

Author: Richard Hamming
Publisher: Courier Corporation
ISBN: 0486134822
Size: 43.85 MB
Format: PDF
View: 2847
Download
This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.

Numerical Methods In Engineering With Python 3

Author: Jaan Kiusalaas
Publisher: Cambridge University Press
ISBN: 1107033853
Size: 45.76 MB
Format: PDF
View: 6538
Download
Provides an introduction to numerical methods for students in engineering. It uses Python 3, an easy-to-use, high-level programming language.

Introduction To Numerical Analysis

Author: Devi Prasad
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842652114
Size: 67.89 MB
Format: PDF, Mobi
View: 6749
Download
An Introduction to Numerical Analysis is designed for a first course on numerical analysis for students of Science and Engineering including Computer Science. The text contains derivation of algorithms for solving engineering and science problems and also deals with error analysis. It has numerical examples suitable for solving through computers. The special features are comparative efficiency and accuracy of various algorithms due to finite digit arithmetic used by the computers.

Scientific Computing And Differential Equations

Author: Gene H. Golub
Publisher: Elsevier
ISBN: 0080516696
Size: 20.68 MB
Format: PDF, ePub
View: 2423
Download
Scientific Computing and Differential Equations: An Introduction to Numerical Methods, is an excellent complement to Introduction to Numerical Methods by Ortega and Poole. The book emphasizes the importance of solving differential equations on a computer, which comprises a large part of what has come to be called scientific computing. It reviews modern scientific computing, outlines its applications, and places the subject in a larger context. This book is appropriate for upper undergraduate courses in mathematics, electrical engineering, and computer science; it is also well-suited to serve as a textbook for numerical differential equations courses at the graduate level. An introductory chapter gives an overview of scientific computing, indicating its important role in solving differential equations, and placing the subject in the larger environment Contains an introduction to numerical methods for both ordinary and partial differential equations Concentrates on ordinary differential equations, especially boundary-value problems Contains most of the main topics for a first course in numerical methods, and can serve as a text for this course Uses material for junior/senior level undergraduate courses in math and computer science plus material for numerical differential equations courses for engineering/science students at the graduate level