Acoustic Array Systems

Author: Mingsian R. Bai
Publisher: John Wiley & Sons
ISBN: 0470828374
Size: 54.48 MB
Format: PDF, Docs
View: 448
Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applications: vehicles, computing and communications equipment, compressors, fans, and household appliances, and hands-free speech. The author concludes with other emerging techniques and innovative algorithms. Encompasses theoretical background, implementation considerations and application know-how Shows how to tackle broader problems in signal processing, control, and transudcers Covers both farfield and nearfield techniques in a balanced way Introduces innovative algorithms including equivalent source imaging (NESI) and high-resolution nearfield arrays Selected code examples available for download for readers to practice on their own Presentation slides available for instructor use A valuable resource for Postgraduates and researchers in acoustics, noise control engineering, audio engineering, and signal processing.

Microphone Arrays

Author: Michael Brandstein
Publisher: Springer Science & Business Media
ISBN: 3662046199
Size: 31.51 MB
Format: PDF, ePub, Mobi
View: 3629
This is the first book to provide a single complete reference on microphone arrays. Top researchers in this field contributed articles documenting the current state of the art in microphone array research, development and technological application.

Microphone Array Signal Processing

Author: Jacob Benesty
Publisher: Springer Science & Business Media
ISBN: 9783540786122
Size: 52.15 MB
Format: PDF, ePub
View: 2474
In the past few years we have written and edited several books in the area of acousticandspeechsignalprocessing. Thereasonbehindthisendeavoristhat there were almost no books available in the literature when we ?rst started while there was (and still is) a real need to publish manuscripts summarizing the most useful ideas, concepts, results, and state-of-the-art algorithms in this important area of research. According to all the feedback we have received so far, we can say that we were right in doing this. Recently, several other researchers have followed us in this journey and have published interesting books with their own visions and perspectives. The idea of writing a book on Microphone Array Signal Processing comes from discussions we have had with many colleagues and friends. As a c- sequence of these discussions, we came up with the conclusion that, again, there is an urgent need for a monograph that carefully explains the theory and implementation of microphone arrays. While there are many manuscripts on antenna arrays from a narrowband perspective (narrowband signals and narrowband processing), the literature is quite scarce when it comes to s- sor arrays explained from a truly broadband perspective. Many algorithms for speech applications were simply borrowed from narrowband antenna - rays. However, a direct application of narrowband ideas to broadband speech processing may not be necessarily appropriate and can lead to many m- understandings.

Subspace Identification For Linear Systems

Author: Peter van Overschee
Publisher: Springer Science & Business Media
ISBN: 1461304652
Size: 78.35 MB
Format: PDF, ePub
View: 2825
Subspace Identification for Linear Systems focuses on the theory, implementation and applications of subspace identification algorithms for linear time-invariant finite- dimensional dynamical systems. These algorithms allow for a fast, straightforward and accurate determination of linear multivariable models from measured input-output data. The theory of subspace identification algorithms is presented in detail. Several chapters are devoted to deterministic, stochastic and combined deterministic-stochastic subspace identification algorithms. For each case, the geometric properties are stated in a main 'subspace' Theorem. Relations to existing algorithms and literature are explored, as are the interconnections between different subspace algorithms. The subspace identification theory is linked to the theory of frequency weighted model reduction, which leads to new interpretations and insights. The implementation of subspace identification algorithms is discussed in terms of the robust and computationally efficient RQ and singular value decompositions, which are well-established algorithms from numerical linear algebra. The algorithms are implemented in combination with a whole set of classical identification algorithms, processing and validation tools in Xmath's ISID, a commercially available graphical user interface toolbox. The basic subspace algorithms in the book are also implemented in a set of Matlab files accompanying the book. An application of ISID to an industrial glass tube manufacturing process is presented in detail, illustrating the power and user-friendliness of the subspace identification algorithms and of their implementation in ISID. The identified model allows for an optimal control of the process, leading to a significant enhancement of the production quality. The applicability of subspace identification algorithms in industry is further illustrated with the application of the Matlab files to ten practical problems. Since all necessary data and Matlab files are included, the reader can easily step through these applications, and thus get more insight in the algorithms. Subspace Identification for Linear Systems is an important reference for all researchers in system theory, control theory, signal processing, automization, mechatronics, chemical, electrical, mechanical and aeronautical engineering.

Computational Acoustics

Author: David R. Bergman
Publisher: John Wiley & Sons
ISBN: 1119277337
Size: 13.71 MB
Format: PDF
View: 7743
Covers the theory and practice of innovative new approaches to modelling acoustic propagation There are as many types of acoustic phenomena as there are media, from longitudinal pressure waves in a fluid to S and P waves in seismology. This text focuses on the application of computational methods to the fields of linear acoustics. Techniques for solving the linear wave equation in homogeneous medium are explored in depth, as are techniques for modelling wave propagation in inhomogeneous and anisotropic fluid medium from a source and scattering from objects. Written for both students and working engineers, this book features a unique pedagogical approach to acquainting readers with innovative numerical methods for developing computational procedures for solving problems in acoustics and for understanding linear acoustic propagation and scattering. Chapters follow a consistent format, beginning with a presentation of modelling paradigms, followed by descriptions of numerical methods appropriate to each paradigm. Along the way important implementation issues are discussed and examples are provided, as are exercises and references to suggested readings. Classic methods and approaches are explored throughout, along with comments on modern advances and novel modeling approaches. Bridges the gap between theory and implementation, and features examples illustrating the use of the methods described Provides complete derivations and explanations of recent research trends in order to provide readers with a deep understanding of novel techniques and methods Features a systematic presentation appropriate for advanced students as well as working professionals References, suggested reading and fully worked problems are provided throughout An indispensable learning tool/reference that readers will find useful throughout their academic and professional careers, this book is both a supplemental text for graduate students in physics and engineering interested in acoustics and a valuable working resource for engineers in an array of industries, including defense, medicine, architecture, civil engineering, aerospace, biotech, and more.

Fundamentals Of Signal Enhancement And Array Signal Processing

Author: Jacob Benesty
Publisher: John Wiley & Sons
ISBN: 1119293146
Size: 80.29 MB
Format: PDF, Mobi
View: 433
A comprehensive guide to the theory and practice of signal enhancement and array signal processing, including matlab codes, exercises and instructor and solution manuals Systematically introduces the fundamental principles, theory and applications of signal enhancement and array signal processing in an accessible manner Offers an updated and relevant treatment of array signal processing with rigor and concision Features a companion website that includes presentation files with lecture notes, homework exercises, course projects, solution manuals, instructor manuals, and Matlab codes for the examples in the book

Advanced Signal Processing Handbook

Author: Stergios Stergiopoulos
Publisher: CRC Press
ISBN: 135136944X
Size: 46.54 MB
Format: PDF, ePub
View: 2290
Advances in digital signal processing algorithms and computer technology have combined to produce real-time systems with capabilities far beyond those of just few years ago. Nonlinear, adaptive methods for signal processing have emerged to provide better array gain performance, however, they lack the robustness of conventional algorithms. The challenge remains to develop a concept that exploits the advantages of both-a scheme that integrates these methods in practical, real-time systems. The Advanced Signal Processing Handbook helps you meet that challenge. Beyond offering an outstanding introduction to the principles and applications of advanced signal processing, it develops a generic processing structure that takes advantage of the similarities that exist among radar, sonar, and medical imaging systems and integrates conventional and nonlinear processing schemes.

Audio Signal Processing For Next Generation Multimedia Communication Systems

Author: Yiteng (Arden) Huang
Publisher: Springer Science & Business Media
ISBN: 1402077696
Size: 62.39 MB
Format: PDF, Kindle
View: 5529
Audio Signal Processing for Next-Generation Multimedia Communication Systems presents cutting-edge digital signal processing theory and implementation techniques for problems including speech acquisition and enhancement using microphone arrays, new adaptive filtering algorithms, multichannel acoustic echo cancellation, sound source tracking and separation, audio coding, and realistic sound stage reproduction. This book's focus is almost exclusively on the processing, transmission, and presentation of audio and acoustic signals in multimedia communications for telecollaboration where immersive acoustics will play a great role in the near future.

Sound Capture And Processing

Author: Ivan Jelev Tashev
Publisher: John Wiley & Sons
ISBN: 9780470994436
Size: 18.40 MB
Format: PDF, Mobi
View: 1336
Provides state-of-the-art algorithms for sound capture, processing and enhancement Sound Capture and Processing: Practical Approaches covers the digital signal processing algorithms and devices for capturing sounds, mostly human speech. It explores the devices and technologies used to capture, enhance and process sound for the needs of communication and speech recognition in modern computers and communication devices. This book gives a comprehensive introduction to basic acoustics and microphones, with coverage of algorithms for noise reduction, acoustic echo cancellation, dereverberation and microphone arrays; charting the progress of such technologies from their evolution to present day standard. Sound Capture and Processing: Practical Approaches Brings together the state-of-the-art algorithms for sound capture, processing and enhancement in one easily accessible volume Provides invaluable implementation techniques required to process algorithms for real life applications and devices Covers a number of advanced sound processing techniques, such as multichannel acoustic echo cancellation, dereverberation and source separation Generously illustrated with figures and charts to demonstrate how sound capture and audio processing systems work An accompanying website containing Matlab code to illustrate the algorithms This invaluable guide will provide audio, R&D and software engineers in the industry of building systems or computer peripherals for speech enhancement with a comprehensive overview of the technologies, devices and algorithms required for modern computers and communication devices. Graduate students studying electrical engineering and computer science, and researchers in multimedia, cell-phones, interactive systems and acousticians will also benefit from this book.

Surface Acoustic Wave Devices And Their Signal Processing Applications

Author: Colin Campbell
Publisher: Elsevier
ISBN: 0323148662
Size: 11.60 MB
Format: PDF, Docs
View: 3375
Surface Acoustic Wave Devices and Their Signal Processing Applications is a textbook that combines experiment and theory in assessing the signal processing applications of surface acoustic wave (SAW) devices. The operating principles of SAW devices are described from a circuit design viewpoint. This book is comprised of 18 chapters and begins with a historical background on surface acoustic waves and a discussion on the merits of SAW devices as well as their applications. The next chapter introduces the reader to the basics of acoustic waves and piezoelectricity, together with the effect of acoustic bulk waves on the performance of SAW filters. The principles of linear phase SAW filter design and equivalent circuit models for a SAW filter are then described. The remaining chapters focus on trade-offs in linear phase SAW filter design; compensation for second-order effects; harmonic SAW delay lines for gigahertz frequencies; and coding techniques using linear SAW transducers. The final chapter highlights Some other significant alternative design techniques and applications for SAW devices. This monograph will be suitable for engineering or physics students as well as engineers, scientists, and technical staff in industry who seek further information on SAW-based circuits, systems, and applications.