A Sequential Introduction To Real Analysis

Author: J M Speight
Publisher: World Scientific Publishing Company
ISBN: 1783267852
Size: 22.56 MB
Format: PDF
View: 6211
Download
Real analysis provides the fundamental underpinnings for calculus, arguably the most useful and influential mathematical idea ever invented. It is a core subject in any mathematics degree, and also one which many students find challenging. A Sequential Introduction to Real Analysis gives a fresh take on real analysis by formulating all the underlying concepts in terms of convergence of sequences. The result is a coherent, mathematically rigorous, but conceptually simple development of the standard theory of differential and integral calculus ideally suited to undergraduate students learning real analysis for the first time. This book can be used as the basis of an undergraduate real analysis course, or used as further reading material to give an alternative perspective within a conventional real analysis course. Request Inspection Copy

Introductory Real Analysis

Author: A. N. Kolmogorov
Publisher: Courier Corporation
ISBN: 9780486612263
Size: 18.46 MB
Format: PDF, Docs
View: 4175
Download
Comprehensive, elementary introduction to real and functional analysis covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, more. 1970 edition.

Mathematical Analysis

Author: Andrew Browder
Publisher: Springer Science & Business Media
ISBN: 1461207150
Size: 43.86 MB
Format: PDF
View: 3683
Download
Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

A Friendly Approach To Functional Analysis

Author: Amol Sasane
Publisher: World Scientific Publishing Company
ISBN: 1786343363
Size: 47.55 MB
Format: PDF, ePub
View: 3958
Download
This book constitutes a concise introductory course on Functional Analysis for students who have studied calculus and linear algebra. The topics covered are Banach spaces, continuous linear transformations, Frechet derivative, geometry of Hilbert spaces, compact operators, and distributions. In addition, the book includes selected applications of functional analysis to differential equations, optimization, physics (classical and quantum mechanics), and numerical analysis. The book contains 197 problems, meant to reinforce the fundamental concepts. The inclusion of detailed solutions to all the exercises makes the book ideal also for self-study. A Friendly Approach to Functional Analysis is written specifically for undergraduate students of pure mathematics and engineering, and those studying joint programmes with mathematics. Request Inspection Copy

Real Analysis

Author: Frank Morgan
Publisher: American Mathematical Soc.
ISBN: 0821836706
Size: 63.89 MB
Format: PDF, Docs
View: 3309
Download
Real Analysis builds the theory behind calculus directly from the basic concepts of real numbers, limits, and open and closed sets in $\mathbb{R}^n$. It gives the three characterizations of continuity: via epsilon-delta, sequences, and open sets. It gives the three characterizations of compactness: as ``closed and bounded,'' via sequences, and via open covers. Topics include Fourier series, the Gamma function, metric spaces, and Ascoli's Theorem. The text not only provides efficient proofs, but also shows the student how to come up with them. The excellent exercises come with select solutions in the back. Here is a real analysis text that is short enough for the student to read and understand and complete enough to be the primary text for a serious undergraduate course. Frank Morgan is the author of five books and over one hundred articles on mathematics. He is an inaugural recipient of the Mathematical Association of America's national Haimo award for excellence in teaching. With this book, Morgan has finally brought his famous direct style to an undergraduate real analysis text.

Real Analysis

Author: Emmanuele DiBenedetto
Publisher: Springer Science & Business Media
ISBN: 9780817642310
Size: 68.48 MB
Format: PDF, Kindle
View: 5987
Download
The focus of this modern graduate text in real analysis is to prepare the potential researcher to a rigorous "way of thinking" in applied mathematics and partial differential equations. The book will provide excellent foundations and serve as a solid building block for research in analysis, PDEs, the calculus of variations, probability, and approximation theory. All the core topics of the subject are covered, from a basic introduction to functional analysis, to measure theory, integration and weak differentiation of functions, and in a presentation that is hands-on, with little or no unnecessary abstractions. Additional features: * Carefully chosen topics, some not touched upon elsewhere: fine properties of integrable functions as they arise in applied mathematics and PDEs – Radon measures, the Lebesgue Theorem for general Radon measures, the Besicovitch covering Theorem, the Rademacher Theorem; topics in Marcinkiewicz integrals, functions of bounded variation, Legendre transform and the characterization of compact subset of some metric function spaces and in particular of Lp spaces * Constructive presentation of the Stone-Weierstrass Theorem * More specialized chapters (8-10) cover topics often absent from classical introductiory texts in analysis: maximal functions and weak Lp spaces, the Calderón-Zygmund decomposition, functions of bounded mean oscillation, the Stein-Fefferman Theorem, the Marcinkiewicz Interpolation Theorem, potential theory, rearrangements, estimations of Riesz potentials including limiting cases * Provides a self-sufficient introduction to Sobolev Spaces, Morrey Spaces and Poincaré inequalities as the backbone of PDEs and as an essential environment to develop modern and current analysis * Comprehensive index This clear, user-friendly exposition of real analysis covers a great deal of territory in a concise fashion, with sufficient motivation and examples throughout. A number of excellent problems, as well as some remarkable features of the exercises, occur at the end of every chapter, which point to additional theorems and results. Stimulating open problems are proposed to engage students in the classroom or in a self-study setting.

Introduction To Real Analysis

Author: William F. Trench
Publisher: Prentice Hall
ISBN: 9780130457868
Size: 46.76 MB
Format: PDF
View: 6382
Download
Using an extremely clear and informal approach, this book introduces readers to a rigorous understanding of mathematical analysis and presents challenging math concepts as clearly as possible. The real number system. Differential calculus of functions of one variable. Riemann integral functions of one variable. Integral calculus of real-valued functions. Metric Spaces. For those who want to gain an understanding of mathematical analysis and challenging mathematical concepts.

Theory Of Games And Statistical Decisions

Author: David A. Blackwell
Publisher: Courier Corporation
ISBN: 0486150895
Size: 31.85 MB
Format: PDF, Kindle
View: 5163
Download
A problem-oriented text for evaluating statistical procedures through decision and game theory. First-year graduates in statistics, computer experts and others will find this highly respected work best introduction to growing field.

Elementary Analysis

Author: Kenneth A. Ross
Publisher: Springer Science & Business Media
ISBN: 1461462711
Size: 74.92 MB
Format: PDF, Docs
View: 5760
Download
For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Linear Operator Theory In Engineering And Science

Author: Arch W. Naylor
Publisher: Springer Science & Business Media
ISBN: 9780387950013
Size: 50.49 MB
Format: PDF, ePub, Docs
View: 599
Download
This book is a unique introduction to the theory of linear operators on Hilbert space. The authors' goal is to present the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented. First published in 1971, Linear Operator in Engineering and Sciences has since proved to be a popular and very useful textbook.