A Primer On Wavelets And Their Scientific Applications

Author: James S. Walker
Publisher: CRC Press
ISBN: 9781420050011
Size: 75.74 MB
Format: PDF, ePub, Mobi
View: 6570
Download
The rapid growth of wavelet applications-speech compression and analysis, image compression and enhancement, and removing noise from audio and images-has created an explosion of activity in creating a theory of wavelet analysis and applying it to a wide variety of scientific and engineering problems. It becomes important, then, that engineers and scientists have a working understanding of wavelets. Until now, however, the study of wavelets has been beyond the mathematical grasp of many who need this understanding. Most treatments of the subject involve ideas from functional analysis, harmonic analysis, and other difficult mathematical techniques. Wavelets and their Scientific Applications offers an introduction to wavelet analysis without mathematical rigor, requiring only algebra and some very basic calculus. The author stresses applications, and explains, using elementary algebra, how wavelet methods are typically applied in analyzing digital data. Software is available for download through CRC's Website that will enable recording, playing, and modifying sound files, and includes a facility for displaying, printing and modifying IEEE gray field images. Unlike other software packages for wavelet analysis, the author developed this attractive, easy-to-use software without the need for a C++ compiler or MATLABä. Throughout the book the author provides numerous suggestions for computer experiments designed to challenge and enhance the reader's comprehension and provide practice in applying the concepts learned. Wavelets and their Scientific Applications thus provides the perfect vehicle for understanding wavelets and their uses. It provides a fast-track learning opportunity for scientists and mathematicians unfamiliar with wavelet concepts and applications, and it is ideal for anyone without an extensive mathematical background.

Wavelets And Other Orthogonal Systems Second Edition

Author: Gilbert G. Walter
Publisher: CRC Press
ISBN: 9781584882275
Size: 49.61 MB
Format: PDF, ePub, Mobi
View: 3123
Download
A bestseller in its first edition, Wavelets and Other Orthogonal Systems: Second Edition has been fully updated to reflect the recent growth and development of this field, especially in the area of multiwavelets. The authors have incorporated more examples and numerous illustrations to help clarify concepts. They have also added a considerable amount of new material, including sections addressing impulse trains, an alternate approach to periodic wavelets, and positive wavelet s. Other new discussions include irregular sampling in wavelet subspaces, hybrid wavelet sampling, interpolating multiwavelets, and several new statistics topics. With cutting-edge applications in data compression, image analysis, numerical analysis, and acoustics wavelets remain at the forefront of current research. Wavelets and Other Orthogonal Systems maintains its mathematical perspective in presenting wavelets in the same setting as other orthogonal systems, thus allowing their advantages and disadvantages to be seen more directly. Now even more student friendly, the second edition forms an outstanding text not only for graduate students in mathematics, but also for those interested in scientific and engineering applications.

The Elements Of Advanced Mathematics Second Edition

Author: Steven G. Krantz
Publisher: CRC Press
ISBN: 9781584883036
Size: 26.85 MB
Format: PDF, Mobi
View: 448
Download
The gap between the rote, calculational learning mode of calculus and ordinary differential equations and the more theoretical learning mode of analysis and abstract algebra grows ever wider and more distinct, and students' need for a well-guided transition grows with it. For more than six years, the bestselling first edition of this classic text has helped them cross the mathematical bridge to more advanced studies in topics such as topology, abstract algebra, and real analysis. Carefully revised, expanded, and brought thoroughly up to date, the Elements of Advanced Mathematics, Second Edition now does the job even better, building the background, tools, and skills students need to meet the challenges of mathematical rigor, axiomatics, and proofs. New in the Second Edition: Expanded explanations of propositional, predicate, and first-order logic, especially valuable in theoretical computer science A chapter that explores the deeper properties of the real numbers, including topological issues and the Cantor set Fuller treatment of proof techniques with expanded discussions on induction, counting arguments, enumeration, and dissection Streamlined treatment of non-Euclidean geometry Discussions on partial orderings, total ordering, and well orderings that fit naturally into the context of relations More thorough treatment of the Axiom of Choice and its equivalents Additional material on Russell's paradox and related ideas Expanded treatment of group theory that helps students grasp the axiomatic method A wealth of added exercises

An Introduction To Quasigroups And Their Representations

Author: Jonathan D. H. Smith
Publisher: CRC Press
ISBN: 9781420010633
Size: 20.48 MB
Format: PDF, ePub
View: 217
Download
Collecting results scattered throughout the literature into one source, An Introduction to Quasigroups and Their Representations shows how representation theories for groups are capable of extending to general quasigroups and illustrates the added depth and richness that result from this extension. To fully understand representation theory, the first three chapters provide a foundation in the theory of quasigroups and loops, covering special classes, the combinatorial multiplication group, universal stabilizers, and quasigroup analogues of abelian groups. Subsequent chapters deal with the three main branches of representation theory-permutation representations of quasigroups, combinatorial character theory, and quasigroup module theory. Each chapter includes exercises and examples to demonstrate how the theories discussed relate to practical applications. The book concludes with appendices that summarize some essential topics from category theory, universal algebra, and coalgebras. Long overshadowed by general group theory, quasigroups have become increasingly important in combinatorics, cryptography, algebra, and physics. Covering key research problems, An Introduction to Quasigroups and Their Representations proves that you can apply group representation theories to quasigroups as well.

Real Analysis And Foundations Second Edition

Author: Steven G. Krantz
Publisher: CRC Press
ISBN: 9781584884835
Size: 38.93 MB
Format: PDF, Mobi
View: 5155
Download
Students preparing for courses in real analysis often encounter either very exacting theoretical treatments or books without enough rigor to stimulate an in-depth understanding of the subject. Further complicating this, the field has not changed much over the past 150 years, prompting few authors to address the lackluster or overly complex dichotomy existing among the available texts. The enormously popular first edition of Real Analysis and Foundations gave students the appropriate combination of authority, rigor, and readability that made the topic accessible while retaining the strict discourse necessary to advance their understanding. The second edition maintains this feature while further integrating new concepts built on Fourier analysis and ideas about wavelets to indicate their application to the theory of signal processing. The author also introduces relevance to the material and surpasses a purely theoretical treatment by emphasizing the applications of real analysis to concrete engineering problems in higher dimensions. Expanded and updated, this text continues to build upon the foundations of real analysis to present novel applications to ordinary and partial differential equations, elliptic boundary value problems on the disc, and multivariable analysis. These qualities, along with more figures, streamlined proofs, and revamped exercises make this an even more lively and vital text than the popular first edition.

Wavelets And Multiwavelets

Author: Fritz Keinert
Publisher: CRC Press
ISBN: 0203011597
Size: 17.27 MB
Format: PDF, ePub, Mobi
View: 2108
Download
Theoretically, multiwavelets hold significant advantages over standard wavelets, particularly for solving more complicated problems, and hence are of great interest. Meeting the needs of engineers and mathematicians, this book provides a comprehensive overview of multiwavelets. The author presents the theory of wavelets from the viewpoint of general multiwavelets, which includes scalar m-band and standard wavelets as special cases, provides a more coherent approach, and provides alternative proofs and new insights even for standard wavelets. The treatment includes complete MATLAB routines that allow readers to implement and experiment with multiwavelet algorithms.

Fast Fourier Transforms Second Edition

Author: James S. Walker
Publisher: CRC Press
ISBN: 9780849371639
Size: 49.97 MB
Format: PDF, ePub
View: 3581
Download
This new edition of an indispensable text provides a clear treatment of Fourier Series, Fourier Transforms, and FFTs. The unique software, included with the book and newly updated for this edition, allows the reader to generate, firsthand, images of all aspects of Fourier analysis described in the text. Topics covered include :

Choice

Author:
Publisher:
ISBN:
Size: 22.79 MB
Format: PDF, Docs
View: 1330
Download

Wavelets

Author: John J. Benedetto
Publisher: CRC Press
ISBN: 9780849382710
Size: 18.27 MB
Format: PDF, Kindle
View: 2125
Download
Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.

A Course In Abstract Harmonic Analysis

Author: Gerald B. Folland
Publisher: CRC Press
ISBN: 9780849384905
Size: 57.55 MB
Format: PDF, Docs
View: 1655
Download
Abstract theory remains an indispensable foundation for the study of concrete cases. It shows what the general picture should look like and provides results that are useful again and again. Despite this, however, there are few, if any introductory texts that present a unified picture of the general abstract theory. A Course in Abstract Harmonic Analysis offers a concise, readable introduction to Fourier analysis on groups and unitary representation theory. After a brief review of the relevant parts of Banach algebra theory and spectral theory, the book proceeds to the basic facts about locally compact groups, Haar measure, and unitary representations, including the Gelfand-Raikov existence theorem. The author devotes two chapters to analysis on Abelian groups and compact groups, then explores induced representations, featuring the imprimitivity theorem and its applications. The book concludes with an informal discussion of some further aspects of the representation theory of non-compact, non-Abelian groups.