Coordination Control Of Distributed Systems

Author: Jan H. van Schuppen
Publisher: Springer
ISBN: 3319104071
Size: 60.37 MB
Format: PDF, ePub
View: 6286
Download
This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to increasing degrees of cooperation of local controllers: fully distributed or decentralized control, control with communication between controllers, coordination control, and multilevel control. The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, control of a printer as a complex machine, and control of an electric power system. The book is composed of short essays each within eight pages, including suggestions and references for further research and reading. By reading the essays collected in the book Coordination Control of Distributed Systems, graduate students and post-docs will be introduced to the research frontiers in control of decentralized and of distributed systems. Control theorists and practitioners with backgrounds in electrical, mechanical, civil and aerospace engineering will find in the book information and inspiration to transfer to their fields of interest the state-of-art in coordination control.

Control Of Discrete Event Systems

Author: Carla Seatzu
Publisher: Springer
ISBN: 1447142764
Size: 23.24 MB
Format: PDF, ePub, Mobi
View: 7569
Download
Control of Discrete-event Systems provides a survey of the most important topics in the discrete-event systems theory with particular focus on finite-state automata, Petri nets and max-plus algebra. Coverage ranges from introductory material on the basic notions and definitions of discrete-event systems to more recent results. Special attention is given to results on supervisory control, state estimation and fault diagnosis of both centralized and distributed/decentralized systems developed in the framework of the Distributed Supervisory Control of Large Plants (DISC) project. Later parts of the text are devoted to the study of congested systems though fluidization, an over approximation allowing a much more efficient study of observation and control problems of timed Petri nets. Finally, the max-plus algebraic approach to the analysis and control of choice-free systems is also considered. Control of Discrete-event Systems provides an introduction to discrete-event systems for readers that are not familiar with this class of systems, but also provides an introduction to research problems and open issues of current interest to readers already familiar with them. Most of the material in this book has been presented during a Ph.D. school held in Cagliari, Italy, in June 2011.

Modeling And Identification Of Linear Parameter Varying Systems

Author: Roland Toth
Publisher: Springer Science & Business Media
ISBN: 364213811X
Size: 19.11 MB
Format: PDF
View: 2680
Download
Through the past 20 years, the framework of Linear Parameter-Varying (LPV) systems has become a promising system theoretical approach to h- dle the controlof mildly nonlinear and especially position dependent systems which are common in mechatronic applications and in the process ind- try. The birth of this system class was initiated by the need of engineers to achieve better performance for nonlinear and time-varying dynamics, c- mon in many industrial applications, than what the classical framework of Linear Time-Invariant (LTI) control can provide. However, it was also a p- mary goal to preserve simplicity and “re-use” the powerful LTI results by extending them to the LPV case. The progress continued according to this philosophy and LPV control has become a well established ?eld with many promising applications. Unfortunately, modeling of LPV systems, especially based on measured data (which is called system identi?cation) has seen a limited development sincethebirthoftheframework. Currentlythisbottleneck oftheLPVfra- work is halting the transfer of the LPV theory into industrial use. Without good models that ful?ll the expectations of the users and without the und- standing how these models correspond to the dynamics of the application, it is di?cult to design high performance LPV control solutions. This book aims to bridge the gap between modeling and control by investigating the fundamental questions of LPV modeling and identi?cation. It explores the missing details of the LPV system theory that have hindered the formu- tion of a well established identi?cation framework.

Biomedical Applications Of Control Engineering

Author: Selim S. Hacısalihzade
Publisher: Springer
ISBN: 3642372791
Size: 14.67 MB
Format: PDF, ePub
View: 4335
Download
Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engineering and biomedical engineering students as well as for medical practitioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice. The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like: Different models for the human operator,dosage and timing optimization in oral drug administration, measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, measurement and control of blood glucose levels both naturally and by means of external controllers in diabetes, and control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers. All chapters include three types of exercises constructed to: Review the concepts discussed in the chapter, allow the reader to apply the newly acquired techniques and subject related facts on simple problems, and indicate directions for open ended theses projects. Appendices on Optimal Control and Fuzzy Control meant as refreshers on those control engineering techniques used throughout the book are also included.

H Control Theory

Author: Edoardo Mosca
Publisher: Springer
ISBN: 3540466045
Size: 28.46 MB
Format: PDF, Docs
View: 7370
Download
The fundamental problem in control engineering is to provide robust performance to uncertain plants. H -control theory began in the early eighties as an attempt to lay down rigorous foundations on the classical robust control requirements. It now turns out that H -control theory is at the crossroads of several important directions of research space or polynomial approach to control and classical interpolation theory; harmonic analysis and operator theory; minimax LQ stochastic control and integral equations. The book presents the underlying fundamental ideas, problems and advances through the pen of leading contributors to the field, for graduate students and researchers in both engineering and mathematics. From the Contents: C. Foias: Commutant Lifting Techniques for Computing Optimal H Controllers.- B.A. Francis: Lectures on H Control and Sampled-Data Systems.- J.W. Helton: Two Topics in Systems Engineering Frequency Domain Design and Nonlinear System.- H. Kwakernaak: The Polynomial Approach to H -Optimal Regulation.- J.B. Pearson: A Short Course in l - Optimal Control

Advanced Topics In Control Systems Theory

Author: Françoise Lamnabhi-Lagarrigue
Publisher: Springer Science & Business Media
ISBN: 9781852339234
Size: 39.20 MB
Format: PDF, ePub, Docs
View: 2659
Download
Advanced Topics in Control Systems Theory contains selected contributions written by lecturers at the second (annual) Formation d’Automatique de Paris (FAP) (Graduate Control School in Paris). It is addressed to graduate students and researchers in control theory with topics touching on a variety of areas of interest to the control community such as cascaded systems, flatness, optimal control, and Hamiltonian and infinite-dimensional systems. The reader is provided with a well-integrated synthesis of the latest thinking in these subjects without the need for an exhaustive literature review. The internationally known contributors to this volume represent many of the most reputable control centers in Europe. Advanced Topics in Control Systems Theory can be used to support either a one-term general advanced course on nonlinear control theory, devoting a few lectures to each chapter, or for more focused and intensive courses at graduate level. The book’s concise but pedagogical manner will give an ideal start to researchers wishing to broaden their knowledge in aspects of modern control theory outside their own expertise.

Advanced Topics In Control Systems Theory

Author: Antonio Loría
Publisher: Springer Science & Business Media
ISBN: 9781846283130
Size: 62.71 MB
Format: PDF
View: 1504
Download
Advanced Topics in Control Systems Theory contains selected contributions written by lecturers at the third (annual) Formation d’Automatique de Paris (FAP) (Graduate Control School in Paris). Following on from the lecture notes from the second FAP (Volume 311 in the same series) it is addressed to graduate students and researchers in control theory with topics touching on a variety of areas of interest to the control community such as nonlinear optimal control, observer design, stability analysis and structural properties of linear systems. The reader is provided with a well-integrated synthesis of the latest thinking in these subjects without the need for an exhaustive literature review. The internationally known contributors to this volume represent many of the most reputable control centers in Europe. Advanced Topics in Control Systems Theory can be used to support either a one-term general advanced course on nonlinear control theory, devoting a few lectures to each chapter, or for more focused and intensive courses at graduate level. The book’s concise but pedagogical manner will give an ideal start to researchers wishing to broaden their knowledge in aspects of modern control theory outside their own expertise.

Quantitative Process Control Theory

Author: Weidong Zhang
Publisher: CRC Press
ISBN: 1439855617
Size: 28.17 MB
Format: PDF, Docs
View: 1710
Download
Quantitative Process Control Theory explains how to solve industrial system problems using a novel control system design theory. This easy-to-use theory does not require designers to choose a weighting function and enables the controllers to be designed or tuned for quantitative engineering performance indices such as overshoot. In each chapter, a summary highlights the main problems and results and exercises improve and test your understanding of the material. Mathematical proofs are provided for almost all the results while examples are based on actual situations in industrial plants involving a paper-making machine, heat exchanger, hot strip mill, maglev, nuclear reactor, distillation column/heavy oil fractionator, jacket-cooled reactor, missile, helicopter/plane, and anesthesia. Developed from the author’s many years of research, this book takes a unique, practical approach for efficiently solving single-input and single-output (SISO) and multiple-input and multiple-output (MIMO) control system design issues for quantitative performance indices. With much of the material classroom-tested, the text is suitable for advanced undergraduate and graduate students in engineering, beginning researchers in robust control, and more seasoned engineers wanting to learn new design techniques.

H Control For Distributed Parameter Systems A State Space Approach

Author: Bert van Keulen
Publisher: Springer Science & Business Media
ISBN: 1461203473
Size: 45.26 MB
Format: PDF, ePub, Mobi
View: 5442
Download
VI 5.3 Proof of the measurement-feedback result. 144 5.4 Relaxation of the a priori assumptions .. 165 5.4.1 Including the feedthroughs . . . . . 165 5.4.2 How to 'remove' the regularity assumptions 174 6 Examples and conclusions 177 6.1 Delay systems in state-space . . . . . . . . . . 177 6.1.1 Dynamic controllers for delay systems. 180 184 6.1.2 A linear quadratic control problem . . 6.1.3 Duality ............... . . 189 6.2 The mixed-sensitivity problem for delay systems 192 6.2.1 Introduction and statement of the problem. 192 6.2.2 Main result .............. . 194 6.3 Conclusions and directions for future research. 200 A Stability theory 205 A.1 205 A.2 206 B Differentiability and some convergence results 207 B.l 207 208 B.2 B.3 209 209 B.4 B.5 209 B.6 211 B.7 213 214 C The invariant zeros condition C.1 214 221 D The relation between P, Q and P 221 D.1 ............ .... . Bibliography 230 239 Index Preface Control of distributed parameter systems is a fascinating and challenging top ic, from both a mathematical and an applications point of view. The same can be said about Hoc-control theory, which has become very popular lately. I am therefore pleased to present in this book a complete treatment of the state-space solution to the Hoo-control problem for a large class of distributed parameter systems.